YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coupling of Sea Level Rise, Tidal Amplification, and Inundation

    Source: Journal of Physical Oceanography:;2014:;Volume( 044 ):;issue: 005::page 1439
    Author:
    Holleman, Rusty C.
    ,
    Stacey, Mark T.
    DOI: 10.1175/JPO-D-13-0214.1
    Publisher: American Meteorological Society
    Abstract: ith the global sea level rising, it is imperative to quantify how the dynamics of tidal estuaries and embayments will respond to increased depth and newly inundated perimeter regions. With increased depth comes a decrease in frictional effects in the basin interior and altered tidal amplification. Inundation due to higher sea level also causes an increase in planform area, tidal prism, and frictional effects in the newly inundated areas. To investigate the coupling between ocean forcing, tidal dynamics, and inundation, the authors employ a high-resolution hydrodynamic model of San Francisco Bay, California, comprising two basins with distinct tidal characteristics. Multiple shoreline scenarios are simulated, ranging from a leveed scenario, in which tidal flows are limited to present-day shorelines, to a simulation in which all topography is allowed to flood. Simulating increased mean sea level, while preserving original shorelines, produces additional tidal amplification. However, flooding of adjacent low-lying areas introduces frictional, intertidal regions that serve as energy sinks for the incident tidal wave. Net tidal amplification in most areas is predicted to be lower in the sea level rise scenarios. Tidal dynamics show a shift to a more progressive wave, dissipative environment with perimeter sloughs becoming major energy sinks. The standing wave southern reach of the bay couples more strongly back to the central portion of the bay, in contrast to the progressive wave northern reach of the bay. Generation of the M4 overtide is also found to vary between scenarios and is a nonnegligible contributor to net changes in high water elevation.
    • Download: (1.706Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coupling of Sea Level Rise, Tidal Amplification, and Inundation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226643
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorHolleman, Rusty C.
    contributor authorStacey, Mark T.
    date accessioned2017-06-09T17:20:15Z
    date available2017-06-09T17:20:15Z
    date copyright2014/05/01
    date issued2014
    identifier issn0022-3670
    identifier otherams-83420.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226643
    description abstractith the global sea level rising, it is imperative to quantify how the dynamics of tidal estuaries and embayments will respond to increased depth and newly inundated perimeter regions. With increased depth comes a decrease in frictional effects in the basin interior and altered tidal amplification. Inundation due to higher sea level also causes an increase in planform area, tidal prism, and frictional effects in the newly inundated areas. To investigate the coupling between ocean forcing, tidal dynamics, and inundation, the authors employ a high-resolution hydrodynamic model of San Francisco Bay, California, comprising two basins with distinct tidal characteristics. Multiple shoreline scenarios are simulated, ranging from a leveed scenario, in which tidal flows are limited to present-day shorelines, to a simulation in which all topography is allowed to flood. Simulating increased mean sea level, while preserving original shorelines, produces additional tidal amplification. However, flooding of adjacent low-lying areas introduces frictional, intertidal regions that serve as energy sinks for the incident tidal wave. Net tidal amplification in most areas is predicted to be lower in the sea level rise scenarios. Tidal dynamics show a shift to a more progressive wave, dissipative environment with perimeter sloughs becoming major energy sinks. The standing wave southern reach of the bay couples more strongly back to the central portion of the bay, in contrast to the progressive wave northern reach of the bay. Generation of the M4 overtide is also found to vary between scenarios and is a nonnegligible contributor to net changes in high water elevation.
    publisherAmerican Meteorological Society
    titleCoupling of Sea Level Rise, Tidal Amplification, and Inundation
    typeJournal Paper
    journal volume44
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-13-0214.1
    journal fristpage1439
    journal lastpage1455
    treeJournal of Physical Oceanography:;2014:;Volume( 044 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian