YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rapid Eddy-Induced Modification of Subtropical Mode Water during the Kuroshio Extension System Study

    Source: Journal of Physical Oceanography:;2014:;Volume( 044 ):;issue: 007::page 1941
    Author:
    Bishop, Stuart P.
    ,
    Watts, D. Randolph
    DOI: 10.1175/JPO-D-13-0191.1
    Publisher: American Meteorological Society
    Abstract: rom 2004 to 2006 an observational array of current- and pressure-recording inverted echo sounders (CPIES) were deployed as part of the Kuroshio Extension (KEx) System Study (KESS). KESS observed a transition from a weakly meandering (?stable?) to strongly meandering (?unstable?) state (Qiu and Chen). As the KEx made this transition, potential vorticity (PV) observed within the southern recirculation gyre (SRG) rapidly increased from January to July 2005. In this study, the authors diagnose eddy PV fluxes (EPVFs) in isentropic coordinates within the subtropical mode water (STMW) layer from the CPIES data to determine the role of mesoscale eddies in this rapid increase of PV.The rapid increase in PV within the SRG coincided with enhanced cross-front EPVFs and eddy PV flux convergence upstream of a mean trough in the KEx path and adjacent to the SRG. The enhanced cross-front EPVFs were the result of the formation of a cold-core ring (CCR) and the interaction of the jet with a preexisting CCR. Eddy diffusivities are diagnosed for the unstable regime with values that range from 100 to 2000 m2 s?1. The high eddy diffusivities during the unstable regime reflect the nature of mesoscale CCR formation and CCR?jet interaction as efficient mechanisms for stirring and mixing high PV waters from the north side of the KEx into the low PV waters of the SRG where STMW resides. This mechanism for cross-frontal exchange can explain observed increases in the STMW PV in the SRG over the 16 months of KESS observations.
    • Download: (1.710Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rapid Eddy-Induced Modification of Subtropical Mode Water during the Kuroshio Extension System Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226627
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorBishop, Stuart P.
    contributor authorWatts, D. Randolph
    date accessioned2017-06-09T17:20:12Z
    date available2017-06-09T17:20:12Z
    date copyright2014/07/01
    date issued2014
    identifier issn0022-3670
    identifier otherams-83405.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226627
    description abstractrom 2004 to 2006 an observational array of current- and pressure-recording inverted echo sounders (CPIES) were deployed as part of the Kuroshio Extension (KEx) System Study (KESS). KESS observed a transition from a weakly meandering (?stable?) to strongly meandering (?unstable?) state (Qiu and Chen). As the KEx made this transition, potential vorticity (PV) observed within the southern recirculation gyre (SRG) rapidly increased from January to July 2005. In this study, the authors diagnose eddy PV fluxes (EPVFs) in isentropic coordinates within the subtropical mode water (STMW) layer from the CPIES data to determine the role of mesoscale eddies in this rapid increase of PV.The rapid increase in PV within the SRG coincided with enhanced cross-front EPVFs and eddy PV flux convergence upstream of a mean trough in the KEx path and adjacent to the SRG. The enhanced cross-front EPVFs were the result of the formation of a cold-core ring (CCR) and the interaction of the jet with a preexisting CCR. Eddy diffusivities are diagnosed for the unstable regime with values that range from 100 to 2000 m2 s?1. The high eddy diffusivities during the unstable regime reflect the nature of mesoscale CCR formation and CCR?jet interaction as efficient mechanisms for stirring and mixing high PV waters from the north side of the KEx into the low PV waters of the SRG where STMW resides. This mechanism for cross-frontal exchange can explain observed increases in the STMW PV in the SRG over the 16 months of KESS observations.
    publisherAmerican Meteorological Society
    titleRapid Eddy-Induced Modification of Subtropical Mode Water during the Kuroshio Extension System Study
    typeJournal Paper
    journal volume44
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-13-0191.1
    journal fristpage1941
    journal lastpage1953
    treeJournal of Physical Oceanography:;2014:;Volume( 044 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian