YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulations of Nearshore Particle-Pair Dispersion in Southern California

    Source: Journal of Physical Oceanography:;2013:;Volume( 043 ):;issue: 009::page 1862
    Author:
    Romero, Leonel
    ,
    Uchiyama, Yusuke
    ,
    Ohlmann, J. Carter
    ,
    McWilliams, James C.
    ,
    Siegel, David A.
    DOI: 10.1175/JPO-D-13-011.1
    Publisher: American Meteorological Society
    Abstract: nowledge of horizontal relative dispersion in nearshore oceans is important for many applications including the transport and fate of pollutants and the dynamics of nearshore ecosystems. Two-particle dispersion statistics are calculated from millions of synthetic particle trajectories from high-resolution numerical simulations of the Southern California Bight. The model horizontal resolution of 250 m allows the investigation of the two-particle dispersion, with an initial pair separation of 500 m. The relative dispersion is characterized with respect to the coastal geometry, bathymetry, eddy kinetic energy, and the relative magnitudes of strain and vorticity. Dispersion is dominated by the submesoscale, not by tides. In general, headlands are more energetic and dispersive than bays. Relative diffusivity estimates are smaller and more anisotropic close to shore. Farther from shore, the relative diffusivity increases and becomes less anisotropic, approaching isotropy ~10 km from the coast. The degree of anisotropy of the relative diffusivity is qualitatively consistent with that for eddy kinetic energy. The total relative diffusivity as a function of pair separation distance R is on average proportional to R5/4. Additional Lagrangian experiments at higher horizontal numerical resolution confirmed the robustness of these results. Structures of large vorticity are preferably elongated and aligned with the coastline nearshore, which may limit cross-shelf dispersion. The results provide useful information for the design of subgrid-scale mixing parameterizations as well as quantifying the transport and dispersal of dissolved pollutants and biological propagules.
    • Download: (2.053Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulations of Nearshore Particle-Pair Dispersion in Southern California

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226558
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorRomero, Leonel
    contributor authorUchiyama, Yusuke
    contributor authorOhlmann, J. Carter
    contributor authorMcWilliams, James C.
    contributor authorSiegel, David A.
    date accessioned2017-06-09T17:19:59Z
    date available2017-06-09T17:19:59Z
    date copyright2013/09/01
    date issued2013
    identifier issn0022-3670
    identifier otherams-83343.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226558
    description abstractnowledge of horizontal relative dispersion in nearshore oceans is important for many applications including the transport and fate of pollutants and the dynamics of nearshore ecosystems. Two-particle dispersion statistics are calculated from millions of synthetic particle trajectories from high-resolution numerical simulations of the Southern California Bight. The model horizontal resolution of 250 m allows the investigation of the two-particle dispersion, with an initial pair separation of 500 m. The relative dispersion is characterized with respect to the coastal geometry, bathymetry, eddy kinetic energy, and the relative magnitudes of strain and vorticity. Dispersion is dominated by the submesoscale, not by tides. In general, headlands are more energetic and dispersive than bays. Relative diffusivity estimates are smaller and more anisotropic close to shore. Farther from shore, the relative diffusivity increases and becomes less anisotropic, approaching isotropy ~10 km from the coast. The degree of anisotropy of the relative diffusivity is qualitatively consistent with that for eddy kinetic energy. The total relative diffusivity as a function of pair separation distance R is on average proportional to R5/4. Additional Lagrangian experiments at higher horizontal numerical resolution confirmed the robustness of these results. Structures of large vorticity are preferably elongated and aligned with the coastline nearshore, which may limit cross-shelf dispersion. The results provide useful information for the design of subgrid-scale mixing parameterizations as well as quantifying the transport and dispersal of dissolved pollutants and biological propagules.
    publisherAmerican Meteorological Society
    titleSimulations of Nearshore Particle-Pair Dispersion in Southern California
    typeJournal Paper
    journal volume43
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-13-011.1
    journal fristpage1862
    journal lastpage1879
    treeJournal of Physical Oceanography:;2013:;Volume( 043 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian