YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Study of an Isotropic Viscoplastic Sea Ice Model in Idealized Configurations

    Source: Journal of Physical Oceanography:;2014:;Volume( 045 ):;issue: 002::page 331
    Author:
    Sirven, Jérôme
    ,
    Tremblay, Bruno
    DOI: 10.1175/JPO-D-13-0109.1
    Publisher: American Meteorological Society
    Abstract: nalytic solutions of a mechanical sea ice model are computed in idealized configurations. They are then used to study the properties of this model. It classically assumes that the ice behaves at large scale as an isotropic viscoplastic medium. The plastic regime is characterized by a Mohr?Coulomb yield curve. The flow rule corresponds to the one used in granular mediums and depends on a parameter δ that characterizes the expansion properties of the medium. Using simple model configurations, this study first shows that a sliding of the ice along the coast must be permitted; otherwise, the model generally has no solution when the plastic regime is active. This study then shows that the viscous regime is reached only if the stress remains nearly uniform over a large area. For a stress having no particular properties, the plastic regime acts everywhere. In this case, the compressive stress may reach the maximum value allowed by the model close to the coastline. The extension of the domain where the compressive stress is at its maximum depends on δ and the direction of the forcing field. Over this domain, the ice behaves as a fluid material with a small negative viscosity. Last, the authors found that neither the existence of the solution nor its unicity are guaranteed in this stationary model. This result does not imply that the unicity is lost in the transient problem; it suggests that the evolution of sea ice depends not only on the forcing, but also on the initial conditions or history of the system.
    • Download: (1.870Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Study of an Isotropic Viscoplastic Sea Ice Model in Idealized Configurations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226557
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSirven, Jérôme
    contributor authorTremblay, Bruno
    date accessioned2017-06-09T17:19:59Z
    date available2017-06-09T17:19:59Z
    date copyright2015/02/01
    date issued2014
    identifier issn0022-3670
    identifier otherams-83342.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226557
    description abstractnalytic solutions of a mechanical sea ice model are computed in idealized configurations. They are then used to study the properties of this model. It classically assumes that the ice behaves at large scale as an isotropic viscoplastic medium. The plastic regime is characterized by a Mohr?Coulomb yield curve. The flow rule corresponds to the one used in granular mediums and depends on a parameter δ that characterizes the expansion properties of the medium. Using simple model configurations, this study first shows that a sliding of the ice along the coast must be permitted; otherwise, the model generally has no solution when the plastic regime is active. This study then shows that the viscous regime is reached only if the stress remains nearly uniform over a large area. For a stress having no particular properties, the plastic regime acts everywhere. In this case, the compressive stress may reach the maximum value allowed by the model close to the coastline. The extension of the domain where the compressive stress is at its maximum depends on δ and the direction of the forcing field. Over this domain, the ice behaves as a fluid material with a small negative viscosity. Last, the authors found that neither the existence of the solution nor its unicity are guaranteed in this stationary model. This result does not imply that the unicity is lost in the transient problem; it suggests that the evolution of sea ice depends not only on the forcing, but also on the initial conditions or history of the system.
    publisherAmerican Meteorological Society
    titleAnalytical Study of an Isotropic Viscoplastic Sea Ice Model in Idealized Configurations
    typeJournal Paper
    journal volume45
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-13-0109.1
    journal fristpage331
    journal lastpage354
    treeJournal of Physical Oceanography:;2014:;Volume( 045 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian