A Numerical Study of Salt Fluxes in Delaware Bay EstuarySource: Journal of Physical Oceanography:;2013:;Volume( 043 ):;issue: 008::page 1572DOI: 10.1175/JPO-D-12-0124.1Publisher: American Meteorological Society
Abstract: he results of a numerical study of Delaware Bay using the Regional Ocean Modeling System (ROMS) are presented. The simulations are run over a range of steady river inputs and used M2 and S2 tidal components to capture the spring?neap variability. Results provide a description of the spatial and temporal structure of the estuarine exchange flow and the salinity field, as well the along-channel salt flux in the estuary. The along-channel salt flux is decomposed into an advective term associated with the river flow, a steady shear dispersion Fe associated with the estuarine exchange flow, and a tidal oscillatory salt flux Ft. Time series of Fe and Ft show that both are larger during neap tide than during spring. This time variability of Ft, which is contrary to existing scalings, is caused by the lateral flows that bring velocity and salinity out of quadrature and the stronger stratification during neap tide, which causes Ft to be enhanced relative to spring tide. A fit for the salt intrusion length L with river discharge Q for a number of isohalines is performed. The functional dependences of L with Q are significantly weaker than Q?1/3 scaling. It is concluded that the response of the salt field with river discharge is due to the dependence of Fe and Ft with Q and the relative importance of Ft to the total upstream salt flux: as river discharge increases, Fe becomes the dominant mechanism. Once Fe dominates, the salt field stiffens because of a reduction of the vertical eddy viscosity with increasing Q.
|
Collections
Show full item record
contributor author | Aristizábal, María | |
contributor author | Chant, Robert | |
date accessioned | 2017-06-09T17:19:33Z | |
date available | 2017-06-09T17:19:33Z | |
date copyright | 2013/08/01 | |
date issued | 2013 | |
identifier issn | 0022-3670 | |
identifier other | ams-83202.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4226402 | |
description abstract | he results of a numerical study of Delaware Bay using the Regional Ocean Modeling System (ROMS) are presented. The simulations are run over a range of steady river inputs and used M2 and S2 tidal components to capture the spring?neap variability. Results provide a description of the spatial and temporal structure of the estuarine exchange flow and the salinity field, as well the along-channel salt flux in the estuary. The along-channel salt flux is decomposed into an advective term associated with the river flow, a steady shear dispersion Fe associated with the estuarine exchange flow, and a tidal oscillatory salt flux Ft. Time series of Fe and Ft show that both are larger during neap tide than during spring. This time variability of Ft, which is contrary to existing scalings, is caused by the lateral flows that bring velocity and salinity out of quadrature and the stronger stratification during neap tide, which causes Ft to be enhanced relative to spring tide. A fit for the salt intrusion length L with river discharge Q for a number of isohalines is performed. The functional dependences of L with Q are significantly weaker than Q?1/3 scaling. It is concluded that the response of the salt field with river discharge is due to the dependence of Fe and Ft with Q and the relative importance of Ft to the total upstream salt flux: as river discharge increases, Fe becomes the dominant mechanism. Once Fe dominates, the salt field stiffens because of a reduction of the vertical eddy viscosity with increasing Q. | |
publisher | American Meteorological Society | |
title | A Numerical Study of Salt Fluxes in Delaware Bay Estuary | |
type | Journal Paper | |
journal volume | 43 | |
journal issue | 8 | |
journal title | Journal of Physical Oceanography | |
identifier doi | 10.1175/JPO-D-12-0124.1 | |
journal fristpage | 1572 | |
journal lastpage | 1588 | |
tree | Journal of Physical Oceanography:;2013:;Volume( 043 ):;issue: 008 | |
contenttype | Fulltext |