YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two Configurations of the Western Arctic Shelfbreak Current in Summer

    Source: Journal of Physical Oceanography:;2011:;Volume( 042 ):;issue: 003::page 329
    Author:
    von Appen, Wilken-Jon
    ,
    Pickart, Robert S.
    DOI: 10.1175/JPO-D-11-026.1
    Publisher: American Meteorological Society
    Abstract: ata from a closely spaced array of moorings situated across the Beaufort Sea shelfbreak at 152°W are used to study the Western Arctic Shelfbreak Current, with emphasis on its configuration during the summer season. Two dynamically distinct states of the current are revealed in the absence of wind, with each lasting approximately one month. The first is a surface-intensified shelfbreak jet transporting warm and buoyant Alaskan Coastal Water in late summer. This is the eastward continuation of the Alaskan Coastal Current. It is both baroclinically and barotropically unstable and hence capable of forming the surface-intensified warm-core eddies observed in the southern Beaufort Sea. The second configuration, present during early summer, is a bottom-intensified shelfbreak current advecting weakly stratified Chukchi Summer Water. It is baroclinically unstable and likely forms the middepth warm-core eddies present in the interior basin. The mesoscale instabilities extract energy from the mean flow such that the surface-intensified jet should spin down over an e-folding distance of 300 km beyond the array site, whereas the bottom-intensified configuration should decay within 150 km. This implies that Pacific Summer Water does not extend far into the Canadian Beaufort Sea as a well-defined shelfbreak current. In contrast, the Pacific Winter Water configuration of the shelfbreak jet is estimated to decay over a much greater distance of approximately 1400 km, implying that it should reach the first entrance to the Canadian Arctic Archipelago.
    • Download: (3.254Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two Configurations of the Western Arctic Shelfbreak Current in Summer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226319
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorvon Appen, Wilken-Jon
    contributor authorPickart, Robert S.
    date accessioned2017-06-09T17:19:17Z
    date available2017-06-09T17:19:17Z
    date copyright2012/03/01
    date issued2011
    identifier issn0022-3670
    identifier otherams-83128.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226319
    description abstractata from a closely spaced array of moorings situated across the Beaufort Sea shelfbreak at 152°W are used to study the Western Arctic Shelfbreak Current, with emphasis on its configuration during the summer season. Two dynamically distinct states of the current are revealed in the absence of wind, with each lasting approximately one month. The first is a surface-intensified shelfbreak jet transporting warm and buoyant Alaskan Coastal Water in late summer. This is the eastward continuation of the Alaskan Coastal Current. It is both baroclinically and barotropically unstable and hence capable of forming the surface-intensified warm-core eddies observed in the southern Beaufort Sea. The second configuration, present during early summer, is a bottom-intensified shelfbreak current advecting weakly stratified Chukchi Summer Water. It is baroclinically unstable and likely forms the middepth warm-core eddies present in the interior basin. The mesoscale instabilities extract energy from the mean flow such that the surface-intensified jet should spin down over an e-folding distance of 300 km beyond the array site, whereas the bottom-intensified configuration should decay within 150 km. This implies that Pacific Summer Water does not extend far into the Canadian Beaufort Sea as a well-defined shelfbreak current. In contrast, the Pacific Winter Water configuration of the shelfbreak jet is estimated to decay over a much greater distance of approximately 1400 km, implying that it should reach the first entrance to the Canadian Arctic Archipelago.
    publisherAmerican Meteorological Society
    titleTwo Configurations of the Western Arctic Shelfbreak Current in Summer
    typeJournal Paper
    journal volume42
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-11-026.1
    journal fristpage329
    journal lastpage351
    treeJournal of Physical Oceanography:;2011:;Volume( 042 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian