YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spatiotemporal Variation in Cross-Shelf Exchange across the Inner Shelf of Monterey Bay, California

    Source: Journal of Physical Oceanography:;2013:;Volume( 043 ):;issue: 008::page 1648
    Author:
    Woodson, C. Brock
    DOI: 10.1175/JPO-D-11-0185.1
    Publisher: American Meteorological Society
    Abstract: ross-shelf exchange resulting from wind- and wave-driven flows across the inner shelf has been the focus of a considerable body of work. This contribution extends recent analyses to the central California coastline using 5-yr of moored current observations. Acoustic Doppler Current Profiler (ADCP) data from stations across the Monterey Bay (two in the northern bay and one in the southern bay), in water depths of ~20 m, showed net offshore transport throughout the year. For the northern bay sites, cross-shelf exchange was dominated by Ekman transport driven by along-shelf diurnal sea breezes during the upwelling season. Intense stratification in the northern bay leads to very shallow observed Ekman layers (~5?8 m), and consequently no overlap between bottom and surface Ekman layers within a few hundred meters of the coast. The total transport is less than predicted by theory consistent with models of shallow-water Ekman transport. The observed transport (~42% of full Ekman transport) is shown to be caused by the influence of a positive vorticity that effectively increases the Coriolis parameter. Wave-driven return flow estimated from an offshore buoy was strongly correlated with observed transport during nonupwelling conditions for the northern, outer bay site, but not for the two inner bay sites (northern and southern). In the southern bay, winds and waves have a significantly reduced effect on the cross-shelf exchange. Internal tidal bores are believed to contribute most of the observed cross-shelf exchange in this region.
    • Download: (6.098Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spatiotemporal Variation in Cross-Shelf Exchange across the Inner Shelf of Monterey Bay, California

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226275
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWoodson, C. Brock
    date accessioned2017-06-09T17:19:07Z
    date available2017-06-09T17:19:07Z
    date copyright2013/08/01
    date issued2013
    identifier issn0022-3670
    identifier otherams-83089.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226275
    description abstractross-shelf exchange resulting from wind- and wave-driven flows across the inner shelf has been the focus of a considerable body of work. This contribution extends recent analyses to the central California coastline using 5-yr of moored current observations. Acoustic Doppler Current Profiler (ADCP) data from stations across the Monterey Bay (two in the northern bay and one in the southern bay), in water depths of ~20 m, showed net offshore transport throughout the year. For the northern bay sites, cross-shelf exchange was dominated by Ekman transport driven by along-shelf diurnal sea breezes during the upwelling season. Intense stratification in the northern bay leads to very shallow observed Ekman layers (~5?8 m), and consequently no overlap between bottom and surface Ekman layers within a few hundred meters of the coast. The total transport is less than predicted by theory consistent with models of shallow-water Ekman transport. The observed transport (~42% of full Ekman transport) is shown to be caused by the influence of a positive vorticity that effectively increases the Coriolis parameter. Wave-driven return flow estimated from an offshore buoy was strongly correlated with observed transport during nonupwelling conditions for the northern, outer bay site, but not for the two inner bay sites (northern and southern). In the southern bay, winds and waves have a significantly reduced effect on the cross-shelf exchange. Internal tidal bores are believed to contribute most of the observed cross-shelf exchange in this region.
    publisherAmerican Meteorological Society
    titleSpatiotemporal Variation in Cross-Shelf Exchange across the Inner Shelf of Monterey Bay, California
    typeJournal Paper
    journal volume43
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-11-0185.1
    journal fristpage1648
    journal lastpage1665
    treeJournal of Physical Oceanography:;2013:;Volume( 043 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian