YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cascade Inequalities for Forced–Dissipated Geostrophic Turbulence

    Source: Journal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 006::page 1470
    Author:
    Arbic, Brian K.
    ,
    Flierl, Glenn R.
    ,
    Scott, Robert B.
    DOI: 10.1175/JPO3067.1
    Publisher: American Meteorological Society
    Abstract: Analysis of spectral kinetic energy fluxes in satellite altimetry data has demonstrated that an inverse cascade of kinetic energy is ubiquitous in the ocean. In geostrophic turbulence models, a fully developed inverse cascade results in barotropic eddies with large horizontal scales. However, midocean eddies contain substantial energy in the baroclinic mode and in compact horizontal scales (scales comparable to the deformation radius Ld). This paper examines the possibility that relatively strong bottom friction prevents the oceanic cascade from becoming fully developed. The importance of the vertical structure of friction is demonstrated by contrasting numerical simulations of two-layer quasigeostrophic turbulence forced by a baroclinically unstable mean flow and damped by bottom Ekman friction with turbulence damped by vertically symmetric Ekman friction (equal decay rates in the two layers). ?Cascade inequalities? derived from the energy and enstrophy equations are used to interpret the numerical results. In the symmetric system, the inequality formally requires a cascade to large-scale barotropic flow, independent of the stratification. The inequality is less strict when friction is in the bottom layer only, especially when stratification is surface intensified. Accordingly, model runs with surface-intensified stratification and relatively strong bottom friction retain substantial small-scale baroclinic energy. Altimetric data show that the symmetric inequality is violated in the low- and midlatitude ocean, again suggesting the potential impact of the ?bottomness? of friction on eddies. Inequalities developed for multilayer turbulence suggest that high baroclinic modes in the mean shear also enhance small-scale baroclinic eddy energy. The inequalities motivate a new interpretation of barotropization in weakly damped turbulence. In that limit the barotropic mode dominates the spatial average of kinetic energy density because large values of barotropic density are found throughout the model domain, consistent with the barotropic cascade to large horizontal scales, while baroclinic density is spatially localized.
    • Download: (1.251Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cascade Inequalities for Forced–Dissipated Geostrophic Turbulence

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226113
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorArbic, Brian K.
    contributor authorFlierl, Glenn R.
    contributor authorScott, Robert B.
    date accessioned2017-06-09T17:18:38Z
    date available2017-06-09T17:18:38Z
    date copyright2007/06/01
    date issued2007
    identifier issn0022-3670
    identifier otherams-82943.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226113
    description abstractAnalysis of spectral kinetic energy fluxes in satellite altimetry data has demonstrated that an inverse cascade of kinetic energy is ubiquitous in the ocean. In geostrophic turbulence models, a fully developed inverse cascade results in barotropic eddies with large horizontal scales. However, midocean eddies contain substantial energy in the baroclinic mode and in compact horizontal scales (scales comparable to the deformation radius Ld). This paper examines the possibility that relatively strong bottom friction prevents the oceanic cascade from becoming fully developed. The importance of the vertical structure of friction is demonstrated by contrasting numerical simulations of two-layer quasigeostrophic turbulence forced by a baroclinically unstable mean flow and damped by bottom Ekman friction with turbulence damped by vertically symmetric Ekman friction (equal decay rates in the two layers). ?Cascade inequalities? derived from the energy and enstrophy equations are used to interpret the numerical results. In the symmetric system, the inequality formally requires a cascade to large-scale barotropic flow, independent of the stratification. The inequality is less strict when friction is in the bottom layer only, especially when stratification is surface intensified. Accordingly, model runs with surface-intensified stratification and relatively strong bottom friction retain substantial small-scale baroclinic energy. Altimetric data show that the symmetric inequality is violated in the low- and midlatitude ocean, again suggesting the potential impact of the ?bottomness? of friction on eddies. Inequalities developed for multilayer turbulence suggest that high baroclinic modes in the mean shear also enhance small-scale baroclinic eddy energy. The inequalities motivate a new interpretation of barotropization in weakly damped turbulence. In that limit the barotropic mode dominates the spatial average of kinetic energy density because large values of barotropic density are found throughout the model domain, consistent with the barotropic cascade to large horizontal scales, while baroclinic density is spatially localized.
    publisherAmerican Meteorological Society
    titleCascade Inequalities for Forced–Dissipated Geostrophic Turbulence
    typeJournal Paper
    journal volume37
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO3067.1
    journal fristpage1470
    journal lastpage1487
    treeJournal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian