YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Annual Cycle of Circulation of the Southwest Subtropical Pacific, Analyzed in an Ocean GCM

    Source: Journal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 006::page 1610
    Author:
    Kessler, William S.
    ,
    Gourdeau, Lionel
    DOI: 10.1175/JPO3046.1
    Publisher: American Meteorological Society
    Abstract: An ocean GCM, interpreted in light of linear models and sparse observations, is used to diagnose the dynamics of the annual cycle of circulation in the western boundary current system of the southwest Pacific Ocean. The simple structure of annual wind stress curl over the South Pacific produces a large region of uniformly phased, stationary thermocline depth anomalies such that the western subtropical gyre spins up and down during the year, directing flow anomalies alternately toward and away from the boundary at its northern end, near 10°S. The response of the western boundary currents is to redistribute these anomalies northward toward the equator and southward to the subtropical gyre, a redistribution that is determined principally by linear Rossby processes, not boundary dynamics. When the subtropical gyre and South Equatorial Current (SEC) are strong (in the second half of the year), the result is both increased equatorward transport of the New Guinea Coastal Current and poleward transport anomalies along the entire Australian coast. Because of this opposite phasing of boundary current anomalies across 10°S, annual migration of the bifurcation point of the total SEC, near 18°S in the mean, has no significance regarding variability of transport from subtropics to equator.
    • Download: (1.753Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Annual Cycle of Circulation of the Southwest Subtropical Pacific, Analyzed in an Ocean GCM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226090
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKessler, William S.
    contributor authorGourdeau, Lionel
    date accessioned2017-06-09T17:18:35Z
    date available2017-06-09T17:18:35Z
    date copyright2007/06/01
    date issued2007
    identifier issn0022-3670
    identifier otherams-82922.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226090
    description abstractAn ocean GCM, interpreted in light of linear models and sparse observations, is used to diagnose the dynamics of the annual cycle of circulation in the western boundary current system of the southwest Pacific Ocean. The simple structure of annual wind stress curl over the South Pacific produces a large region of uniformly phased, stationary thermocline depth anomalies such that the western subtropical gyre spins up and down during the year, directing flow anomalies alternately toward and away from the boundary at its northern end, near 10°S. The response of the western boundary currents is to redistribute these anomalies northward toward the equator and southward to the subtropical gyre, a redistribution that is determined principally by linear Rossby processes, not boundary dynamics. When the subtropical gyre and South Equatorial Current (SEC) are strong (in the second half of the year), the result is both increased equatorward transport of the New Guinea Coastal Current and poleward transport anomalies along the entire Australian coast. Because of this opposite phasing of boundary current anomalies across 10°S, annual migration of the bifurcation point of the total SEC, near 18°S in the mean, has no significance regarding variability of transport from subtropics to equator.
    publisherAmerican Meteorological Society
    titleThe Annual Cycle of Circulation of the Southwest Subtropical Pacific, Analyzed in an Ocean GCM
    typeJournal Paper
    journal volume37
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO3046.1
    journal fristpage1610
    journal lastpage1627
    treeJournal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian