YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Is Interleaving in the Agulhas Current Driven by Near-Inertial Velocity Perturbations?

    Source: Journal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 004::page 932
    Author:
    Beal, Lisa M.
    DOI: 10.1175/JPO3040.1
    Publisher: American Meteorological Society
    Abstract: Recent observations taken at a number of latitudes in the Agulhas Current reveal that the water mass structure on either side of its dynamical core is distinctly different. Moreover, interleaving of these distinct water masses is observed at over 80% of the stations occupied in the current, particularly within the subsurface density layer between tropical surface water and subtropical surface water masses, and within the intermediate layer between the Antarctic Intermediate Water and Red Sea water masses. Direct velocity measurements allow for a comparison between the characteristic vertical length scales of the Agulhas intrusions and those of velocity perturbations found throughout the current. It is found that the interleaving scales match those of the velocity perturbations, which are manifest as high-wavenumber vertical shear layers and are identified as near-inertial oscillations. Furthermore, the properties of the intrusions indicate that double diffusion is not an important process in their development: they are generally not associated with a density anomaly, their slope and thickness fall outside the predicted maxima for instability, and a strong horizontal shear field acts to separate water parcels more quickly than intrusions would be able to grow by double-diffusive processes. Instead, the position, thickness, and slope of Agulhas intrusions relative to the background salinity and density field suggest that they are forced by rotating inertial velocities, with subsequent growth possibly driven by small-scale baroclinic instabilities. However, not all the evidence points conclusively toward advectively driven intrusions. For instance, there is a discrepancy between the observed salinity anomaly amplitude and the predicted inertial displacement given the background salinity gradient, which deserves further examination. Hence, there is a future need for more pointed observations and perhaps the development of an analytical or numerical model to understand the exact nature of Agulhas intrusions.
    • Download: (1.572Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Is Interleaving in the Agulhas Current Driven by Near-Inertial Velocity Perturbations?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226083
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorBeal, Lisa M.
    date accessioned2017-06-09T17:18:35Z
    date available2017-06-09T17:18:35Z
    date copyright2007/04/01
    date issued2007
    identifier issn0022-3670
    identifier otherams-82916.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226083
    description abstractRecent observations taken at a number of latitudes in the Agulhas Current reveal that the water mass structure on either side of its dynamical core is distinctly different. Moreover, interleaving of these distinct water masses is observed at over 80% of the stations occupied in the current, particularly within the subsurface density layer between tropical surface water and subtropical surface water masses, and within the intermediate layer between the Antarctic Intermediate Water and Red Sea water masses. Direct velocity measurements allow for a comparison between the characteristic vertical length scales of the Agulhas intrusions and those of velocity perturbations found throughout the current. It is found that the interleaving scales match those of the velocity perturbations, which are manifest as high-wavenumber vertical shear layers and are identified as near-inertial oscillations. Furthermore, the properties of the intrusions indicate that double diffusion is not an important process in their development: they are generally not associated with a density anomaly, their slope and thickness fall outside the predicted maxima for instability, and a strong horizontal shear field acts to separate water parcels more quickly than intrusions would be able to grow by double-diffusive processes. Instead, the position, thickness, and slope of Agulhas intrusions relative to the background salinity and density field suggest that they are forced by rotating inertial velocities, with subsequent growth possibly driven by small-scale baroclinic instabilities. However, not all the evidence points conclusively toward advectively driven intrusions. For instance, there is a discrepancy between the observed salinity anomaly amplitude and the predicted inertial displacement given the background salinity gradient, which deserves further examination. Hence, there is a future need for more pointed observations and perhaps the development of an analytical or numerical model to understand the exact nature of Agulhas intrusions.
    publisherAmerican Meteorological Society
    titleIs Interleaving in the Agulhas Current Driven by Near-Inertial Velocity Perturbations?
    typeJournal Paper
    journal volume37
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO3040.1
    journal fristpage932
    journal lastpage945
    treeJournal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian