YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Satellite Observations of Seasonal and Interannual Changes of Sea Level and Currents over the Scotian Slope

    Source: Journal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 004::page 1051
    Author:
    Han, Guoqi
    DOI: 10.1175/JPO3036.1
    Publisher: American Meteorological Society
    Abstract: Seasonal and interannual sea level and current variations over the Scotian slope are examined using 10 years of Ocean Topography Experiment (TOPEX)/Poseidon (T/P) satellite altimeter data. Geostrophic surface current anomalies normal to ground tracks are derived from the along-track gradients of sea level anomalies. The altimetric current anomalies are combined with a climatological mean circulation field of a finite-element model to construct nominal absolute currents. The seasonal mean results indicate that the sea level is highest in late summer and lowest in late winter and that the surface slope circulation is strong in winter/autumn and weaker in summer/spring. The total transport associated with the westward shelf-edge current and with the eastward slope current, calculated by combining the T/P data with a climatological seasonal mean density field, reveals a substantial seasonal change dominated by the barotropic component. The present analysis reveals prominent interannual changes of the sea level and current anomalies for the study period. The sea level was lowest in 1996/97, when the Gulf Stream was in its most southern position. The mean winter circulation over the Scotian slope was strongest (up to 30 cm s?1 in both the southwestward shelf-edge current and northeastward slope current) in 1998 and weakest (weaker and broader shelf-edge current) in 1996, which may be related to the fluctuation of the equatorward Labrador Current strength and of the Gulf Stream north?south position. The study also suggests that the root-mean-square current magnitude is positively correlated with the occurrence of the Gulf Stream warm-core rings (WCRs) on the interannual scale, while WCR yearly mean kinematic properties seem to have small variations.
    • Download: (2.907Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Satellite Observations of Seasonal and Interannual Changes of Sea Level and Currents over the Scotian Slope

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226079
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorHan, Guoqi
    date accessioned2017-06-09T17:18:34Z
    date available2017-06-09T17:18:34Z
    date copyright2007/04/01
    date issued2007
    identifier issn0022-3670
    identifier otherams-82912.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226079
    description abstractSeasonal and interannual sea level and current variations over the Scotian slope are examined using 10 years of Ocean Topography Experiment (TOPEX)/Poseidon (T/P) satellite altimeter data. Geostrophic surface current anomalies normal to ground tracks are derived from the along-track gradients of sea level anomalies. The altimetric current anomalies are combined with a climatological mean circulation field of a finite-element model to construct nominal absolute currents. The seasonal mean results indicate that the sea level is highest in late summer and lowest in late winter and that the surface slope circulation is strong in winter/autumn and weaker in summer/spring. The total transport associated with the westward shelf-edge current and with the eastward slope current, calculated by combining the T/P data with a climatological seasonal mean density field, reveals a substantial seasonal change dominated by the barotropic component. The present analysis reveals prominent interannual changes of the sea level and current anomalies for the study period. The sea level was lowest in 1996/97, when the Gulf Stream was in its most southern position. The mean winter circulation over the Scotian slope was strongest (up to 30 cm s?1 in both the southwestward shelf-edge current and northeastward slope current) in 1998 and weakest (weaker and broader shelf-edge current) in 1996, which may be related to the fluctuation of the equatorward Labrador Current strength and of the Gulf Stream north?south position. The study also suggests that the root-mean-square current magnitude is positively correlated with the occurrence of the Gulf Stream warm-core rings (WCRs) on the interannual scale, while WCR yearly mean kinematic properties seem to have small variations.
    publisherAmerican Meteorological Society
    titleSatellite Observations of Seasonal and Interannual Changes of Sea Level and Currents over the Scotian Slope
    typeJournal Paper
    journal volume37
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO3036.1
    journal fristpage1051
    journal lastpage1065
    treeJournal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian