YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Stratification on the Large-Scale Ocean Response to Barometric Pressure

    Source: Journal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 002::page 245
    Author:
    Ponte, Rui M.
    ,
    Vinogradov, Sergey V.
    DOI: 10.1175/JPO3010.1
    Publisher: American Meteorological Society
    Abstract: Single-layer (barotropic) models have been commonly used in studies of the inverted barometer effect and the oceanic response to atmospheric pressure loading. The potential effects of stratification on this response are explored here using a general circulation model in a near-global domain with realistic coasts and bathymetry. Periodic forcing by the diurnal and semidiurnal atmospheric tides and 6-hourly stochastic forcing from weather center analyses are both examined. A global dynamic response (i.e., departures from inverted barometer behavior) is clear in the response to atmospheric tides; for stochastic forcing, the largest dynamic signals occur in shallow and semienclosed regions and at mid- and high latitudes. The influence of stratification in the dynamics is assessed by comparing surface and bottom pressure signals. Baroclinic effects are generally weak, particularly in the response to the large-scale atmospheric tides. Under stochastic forcing, largest differences between surface and bottom pressure signals reach 10%?20% of the surface signals and tend to occur in regions of enhanced topographic gradients. Bottom-intensified, localized interactions with topography seem to be involved. Enhanced baroclinicity is also seen at low latitudes, where stratification effects are also felt in the upper ocean. General implications for modeling the ocean response to high-frequency atmospheric and tidal forcing are discussed.
    • Download: (2.003Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Stratification on the Large-Scale Ocean Response to Barometric Pressure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226049
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorPonte, Rui M.
    contributor authorVinogradov, Sergey V.
    date accessioned2017-06-09T17:18:30Z
    date available2017-06-09T17:18:30Z
    date copyright2007/02/01
    date issued2007
    identifier issn0022-3670
    identifier otherams-82886.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226049
    description abstractSingle-layer (barotropic) models have been commonly used in studies of the inverted barometer effect and the oceanic response to atmospheric pressure loading. The potential effects of stratification on this response are explored here using a general circulation model in a near-global domain with realistic coasts and bathymetry. Periodic forcing by the diurnal and semidiurnal atmospheric tides and 6-hourly stochastic forcing from weather center analyses are both examined. A global dynamic response (i.e., departures from inverted barometer behavior) is clear in the response to atmospheric tides; for stochastic forcing, the largest dynamic signals occur in shallow and semienclosed regions and at mid- and high latitudes. The influence of stratification in the dynamics is assessed by comparing surface and bottom pressure signals. Baroclinic effects are generally weak, particularly in the response to the large-scale atmospheric tides. Under stochastic forcing, largest differences between surface and bottom pressure signals reach 10%?20% of the surface signals and tend to occur in regions of enhanced topographic gradients. Bottom-intensified, localized interactions with topography seem to be involved. Enhanced baroclinicity is also seen at low latitudes, where stratification effects are also felt in the upper ocean. General implications for modeling the ocean response to high-frequency atmospheric and tidal forcing are discussed.
    publisherAmerican Meteorological Society
    titleEffects of Stratification on the Large-Scale Ocean Response to Barometric Pressure
    typeJournal Paper
    journal volume37
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO3010.1
    journal fristpage245
    journal lastpage258
    treeJournal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian