YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bottom Layer Turbulence in the Red Sea Outflow Plume

    Source: Journal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 009::page 1763
    Author:
    Peters, Hartmut
    ,
    Johns, William E.
    DOI: 10.1175/JPO2939.1
    Publisher: American Meteorological Society
    Abstract: Turbulence in the Red Sea outflow plume in the western Gulf of Aden was observed with an upward-looking, five-beam, 600-kHz acoustic Doppler current profiler (ADCP). The ?Bottom Lander? ADCP was deployed on the seafloor in two narrow, topographically confined outflow channels south of Bab el Mandeb for periods of 18?40 h at three locations at 376-, 496-, and 772-m depths. Two deployments were taken during the winter season of maximum outflow from the Red Sea and two in the summer season of minimum outflow. These short-term observations exhibit red velocity spectra with high-frequency fluctuations of typically a few centimeters per second RMS velocity during strong plume flow as well as strong subtidal variations. In one winter season event, the plume flow was reduced by a factor of 4 over an 18-h time span. In variance-preserving form, velocity spectra show a separation at frequencies of 0.3?3 cycles per hour between low-frequency and high-frequency signals. The latter show significant coherence between horizontal and vertical velocity components; hence they carried turbulent stress. Based on a comparison with velocity spectra from atmospheric mixed-layer observations, the authors argue that large variance at frequencies of the order of 1 cph was possibly associated with bottom-generated, upward-propagating internal waves. One coherent feature that matched such waves was observed directly. Higher frequencies correspond to turbulent motions of energy-carrying scales. The turbulent Reynolds stress at heights above the bottom between 4 and 30?40 m was computed for most of the ADCP observations. Near the bottom, the streamwise turbulent stress and the streamwise velocity followed a quadratic drag law with drag coefficients ranging from 0.002 to 0.008. There was also significant spanwise stress, hinting at the three-dimensional nature of the boundary layer flow. The time?height variations of the stress and its spectrum proved to be complex, one of its most striking features being angles of up to ?40° between the direction of the stress and that of the low-frequency flow. The turbulent shear production and eddy viscosity were also examined. On the technical side, the paper discusses the role of the fifth, center-beam velocity measurements in correcting for instrument tilt along with the effect of beam spreading in the 30° Janus configuration of the ?regular? four ADCP beams. Instrumental noise and detection limits for the stress are also established.
    • Download: (2.999Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bottom Layer Turbulence in the Red Sea Outflow Plume

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225973
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorPeters, Hartmut
    contributor authorJohns, William E.
    date accessioned2017-06-09T17:18:19Z
    date available2017-06-09T17:18:19Z
    date copyright2006/09/01
    date issued2006
    identifier issn0022-3670
    identifier otherams-82817.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225973
    description abstractTurbulence in the Red Sea outflow plume in the western Gulf of Aden was observed with an upward-looking, five-beam, 600-kHz acoustic Doppler current profiler (ADCP). The ?Bottom Lander? ADCP was deployed on the seafloor in two narrow, topographically confined outflow channels south of Bab el Mandeb for periods of 18?40 h at three locations at 376-, 496-, and 772-m depths. Two deployments were taken during the winter season of maximum outflow from the Red Sea and two in the summer season of minimum outflow. These short-term observations exhibit red velocity spectra with high-frequency fluctuations of typically a few centimeters per second RMS velocity during strong plume flow as well as strong subtidal variations. In one winter season event, the plume flow was reduced by a factor of 4 over an 18-h time span. In variance-preserving form, velocity spectra show a separation at frequencies of 0.3?3 cycles per hour between low-frequency and high-frequency signals. The latter show significant coherence between horizontal and vertical velocity components; hence they carried turbulent stress. Based on a comparison with velocity spectra from atmospheric mixed-layer observations, the authors argue that large variance at frequencies of the order of 1 cph was possibly associated with bottom-generated, upward-propagating internal waves. One coherent feature that matched such waves was observed directly. Higher frequencies correspond to turbulent motions of energy-carrying scales. The turbulent Reynolds stress at heights above the bottom between 4 and 30?40 m was computed for most of the ADCP observations. Near the bottom, the streamwise turbulent stress and the streamwise velocity followed a quadratic drag law with drag coefficients ranging from 0.002 to 0.008. There was also significant spanwise stress, hinting at the three-dimensional nature of the boundary layer flow. The time?height variations of the stress and its spectrum proved to be complex, one of its most striking features being angles of up to ?40° between the direction of the stress and that of the low-frequency flow. The turbulent shear production and eddy viscosity were also examined. On the technical side, the paper discusses the role of the fifth, center-beam velocity measurements in correcting for instrument tilt along with the effect of beam spreading in the 30° Janus configuration of the ?regular? four ADCP beams. Instrumental noise and detection limits for the stress are also established.
    publisherAmerican Meteorological Society
    titleBottom Layer Turbulence in the Red Sea Outflow Plume
    typeJournal Paper
    journal volume36
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2939.1
    journal fristpage1763
    journal lastpage1785
    treeJournal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian