YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impacts of Localized Mixing and Topography on the Stationary Abyssal Circulation

    Source: Journal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 008::page 1660
    Author:
    Katsman, Caroline A.
    DOI: 10.1175/JPO2925.1
    Publisher: American Meteorological Society
    Abstract: Stommel and coworkers calculated the stationary, geostrophic circulation in the abyssal ocean driven by prescribed sources (representing convective downwelling sites) and sinks (slow, widespread upwelling through the thermocline). The applied basin geometries were highly idealized with nearly uniform upwelling and gradual bottom slopes. In this paper, the classical Stommel?Arons theory for the abyssal circulation is extended by introducing pronounced bathymetry in the form of a midocean ridge and strongly enhanced upwelling in the vicinity of this ridge, modeled after direct observations of diapycnal mixing rates in the deep ocean. Locally enhanced upwelling over a midocean ridge drives a ?-plume circulation that is modified by topographic stretching. The dynamics of this abyssal circulation pattern are explained by analyzing the combined impacts of the upwelling pattern and the bathymetry on the stationary circulation, building on their well-known separate impacts. On the western flank of the ridge, the effects of topographic stretching and upwelling oppose, and the direction of the local flow depends on their relative size. In this paper, a simple theoretical estimate is derived that can predict the direction of the flow along the ridge based on the geometry of the basin and the upwelling region. Its applicability is demonstrated for both the idealized model configurations applied in this study and for more realistic model simulations.
    • Download: (1.275Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impacts of Localized Mixing and Topography on the Stationary Abyssal Circulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225958
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKatsman, Caroline A.
    date accessioned2017-06-09T17:18:16Z
    date available2017-06-09T17:18:16Z
    date copyright2006/08/01
    date issued2006
    identifier issn0022-3670
    identifier otherams-82803.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225958
    description abstractStommel and coworkers calculated the stationary, geostrophic circulation in the abyssal ocean driven by prescribed sources (representing convective downwelling sites) and sinks (slow, widespread upwelling through the thermocline). The applied basin geometries were highly idealized with nearly uniform upwelling and gradual bottom slopes. In this paper, the classical Stommel?Arons theory for the abyssal circulation is extended by introducing pronounced bathymetry in the form of a midocean ridge and strongly enhanced upwelling in the vicinity of this ridge, modeled after direct observations of diapycnal mixing rates in the deep ocean. Locally enhanced upwelling over a midocean ridge drives a ?-plume circulation that is modified by topographic stretching. The dynamics of this abyssal circulation pattern are explained by analyzing the combined impacts of the upwelling pattern and the bathymetry on the stationary circulation, building on their well-known separate impacts. On the western flank of the ridge, the effects of topographic stretching and upwelling oppose, and the direction of the local flow depends on their relative size. In this paper, a simple theoretical estimate is derived that can predict the direction of the flow along the ridge based on the geometry of the basin and the upwelling region. Its applicability is demonstrated for both the idealized model configurations applied in this study and for more realistic model simulations.
    publisherAmerican Meteorological Society
    titleImpacts of Localized Mixing and Topography on the Stationary Abyssal Circulation
    typeJournal Paper
    journal volume36
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2925.1
    journal fristpage1660
    journal lastpage1671
    treeJournal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian