YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Propagation of Low-Mode Internal Waves through the Ocean

    Source: Journal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 006::page 1220
    Author:
    Rainville, Luc
    ,
    Pinkel, Robert
    DOI: 10.1175/JPO2889.1
    Publisher: American Meteorological Society
    Abstract: The baroclinic tides play a significant role in the energy budget of the abyssal ocean. Although the basic principles of generation and propagation are known, a clear understanding of these phenomena in the complex ocean environment is only now emerging. To advance this effort, a ray model is developed that quantifies the effects of spatially variable topography, stratification, and planetary vorticity on the horizontal propagation of internal gravity modes. The objective is to identify ?baroclinic shoals? where wave energy is spatially concentrated and enhanced dissipation might be expected. The model is then extended to investigate the propagation of internal waves through a barotropic mesoscale current field. The refraction of tidally generated internal waves at the Hawaiian Ridge is examined using an ensemble of mesoscale background realizations derived from weekly Ocean Topography Experiment (TOPEX)/Poseidon altimetric measurements. The path of mode 1 is only slightly affected by typical currents, although its phase becomes increasingly random as the propagation distance from the source increases. The effect of the currents becomes more dramatic as mode number increases. For modes 3 and higher, wave phase can vary between realizations by ±π only a few wavelengths from the source. This phase variability reduces the magnitude of the baroclinic signal seen in altimetric data, creating a fictitious energy loss along the propagation path. In the TOPEX/Poseidon observations, the mode-1 M2 internal tide does appear to lose significant energy as it propagates southwestward from the Hawaiian Ridge. The simulations suggest that phase modulation by mesoscale flows could be responsible for a large fraction of this apparent loss. In contrast, northeast-propagating internal tides encounter a less energetic mesoscale and should experience limited refraction. The apparent energy loss seen in the altimetric data on the north side of the ridge might indeed be real.
    • Download: (2.116Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Propagation of Low-Mode Internal Waves through the Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225917
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorRainville, Luc
    contributor authorPinkel, Robert
    date accessioned2017-06-09T17:18:11Z
    date available2017-06-09T17:18:11Z
    date copyright2006/06/01
    date issued2006
    identifier issn0022-3670
    identifier otherams-82767.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225917
    description abstractThe baroclinic tides play a significant role in the energy budget of the abyssal ocean. Although the basic principles of generation and propagation are known, a clear understanding of these phenomena in the complex ocean environment is only now emerging. To advance this effort, a ray model is developed that quantifies the effects of spatially variable topography, stratification, and planetary vorticity on the horizontal propagation of internal gravity modes. The objective is to identify ?baroclinic shoals? where wave energy is spatially concentrated and enhanced dissipation might be expected. The model is then extended to investigate the propagation of internal waves through a barotropic mesoscale current field. The refraction of tidally generated internal waves at the Hawaiian Ridge is examined using an ensemble of mesoscale background realizations derived from weekly Ocean Topography Experiment (TOPEX)/Poseidon altimetric measurements. The path of mode 1 is only slightly affected by typical currents, although its phase becomes increasingly random as the propagation distance from the source increases. The effect of the currents becomes more dramatic as mode number increases. For modes 3 and higher, wave phase can vary between realizations by ±π only a few wavelengths from the source. This phase variability reduces the magnitude of the baroclinic signal seen in altimetric data, creating a fictitious energy loss along the propagation path. In the TOPEX/Poseidon observations, the mode-1 M2 internal tide does appear to lose significant energy as it propagates southwestward from the Hawaiian Ridge. The simulations suggest that phase modulation by mesoscale flows could be responsible for a large fraction of this apparent loss. In contrast, northeast-propagating internal tides encounter a less energetic mesoscale and should experience limited refraction. The apparent energy loss seen in the altimetric data on the north side of the ridge might indeed be real.
    publisherAmerican Meteorological Society
    titlePropagation of Low-Mode Internal Waves through the Ocean
    typeJournal Paper
    journal volume36
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2889.1
    journal fristpage1220
    journal lastpage1236
    treeJournal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian