YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge

    Source: Journal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 006::page 1019
    Author:
    Zaron, Edward D.
    ,
    Egbert, Gary D.
    DOI: 10.1175/JPO2878.1
    Publisher: American Meteorological Society
    Abstract: The generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations for the dissipation of energy via friction in the bottom boundary layer and form drag due to internal waves generated at topographic slopes. Sea surface height data from 364 orbit cycles of the Ocean Topography Experiment (TOPEX)/Poseidon satellite mission are used to perform inversions at eight diurnal and semidiurnal tidal frequencies. It is estimated that the barotropic M2 tide loses energy at a rate of 19 GW, of which 88% is lost within 250 km of the ridge, presumably via conversion to the internal or baroclinic tide. Uncertainty in the assumed model error and wave drag in the forward model suggest that M2 dissipation values from 18 to 25 GW are consistent with the altimetric observations. Other barotropic tidal constituents are estimated to lose a total of 5.7 GW. The spatial distribution of barotropic dissipation along the ridge is similar to that inferred from three-dimensional primitive equation models, and it is largely insensitive to details of assumed model and data errors. Dissipation at semidiurnal frequencies is most intense at the French Frigate Shoals with lesser, but significant, contributions at other sites. Diurnal tidal dissipation is concentrated to the east of the French Frigate Shoals, at the Gardner Pinnacles. Further work with three-dimensional models will be necessary to determine the fate of the energy that is removed from the barotropic tide.
    • Download: (1.241Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225905
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorZaron, Edward D.
    contributor authorEgbert, Gary D.
    date accessioned2017-06-09T17:18:07Z
    date available2017-06-09T17:18:07Z
    date copyright2006/06/01
    date issued2006
    identifier issn0022-3670
    identifier otherams-82756.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225905
    description abstractThe generalized inverse of a regional model is used to estimate barotropic tidal dissipation along the Hawaiian Ridge. The model, based on the linear shallow-water equations, incorporates parameterizations for the dissipation of energy via friction in the bottom boundary layer and form drag due to internal waves generated at topographic slopes. Sea surface height data from 364 orbit cycles of the Ocean Topography Experiment (TOPEX)/Poseidon satellite mission are used to perform inversions at eight diurnal and semidiurnal tidal frequencies. It is estimated that the barotropic M2 tide loses energy at a rate of 19 GW, of which 88% is lost within 250 km of the ridge, presumably via conversion to the internal or baroclinic tide. Uncertainty in the assumed model error and wave drag in the forward model suggest that M2 dissipation values from 18 to 25 GW are consistent with the altimetric observations. Other barotropic tidal constituents are estimated to lose a total of 5.7 GW. The spatial distribution of barotropic dissipation along the ridge is similar to that inferred from three-dimensional primitive equation models, and it is largely insensitive to details of assumed model and data errors. Dissipation at semidiurnal frequencies is most intense at the French Frigate Shoals with lesser, but significant, contributions at other sites. Diurnal tidal dissipation is concentrated to the east of the French Frigate Shoals, at the Gardner Pinnacles. Further work with three-dimensional models will be necessary to determine the fate of the energy that is removed from the barotropic tide.
    publisherAmerican Meteorological Society
    titleEstimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge
    typeJournal Paper
    journal volume36
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2878.1
    journal fristpage1019
    journal lastpage1035
    treeJournal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian