YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat and Freshwater Transport through the Central Labrador Sea

    Source: Journal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 004::page 606
    Author:
    Straneo, F.
    DOI: 10.1175/JPO2875.1
    Publisher: American Meteorological Society
    Abstract: The seasonal and interannual variations in the export of Labrador Sea Water (LSW), and in the heat and freshwater transport through the central Labrador Sea, are examined for two different periods: from 1964 to 1974, using Ocean Weather Station Bravo data, and from 1996 to 2000, using data collected from profiling floats. A typical seasonal cycle involves a 300-m thickening of LSW (convection) followed by an equivalent thinning (restratification). Restratification is characterized by a drift of properties toward boundary current values that is indicative of a vigorous lateral exchange. The net result is a convergence of heat and salt, between 200 and 700 m, that balances the net surface heat loss to the atmosphere and partially offsets the surface freshwater accumulation due to surface, lateral exchange. Interannual variations in the export of LSW can be explained by taking into account changes in the central Labrador Sea?boundary current density gradient, which governs the lateral exchange. Interannual variations in how much heat is converged into the region, on the other hand, mostly reflect changes in the temperature of LSW. This only partly explains, however, the increased convergence of heat that occurs during the late 1990s. In years in which convection does not occur, restratification trends continue throughout the entire year, albeit at a reduced rate.
    • Download: (2.302Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat and Freshwater Transport through the Central Labrador Sea

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225902
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorStraneo, F.
    date accessioned2017-06-09T17:18:07Z
    date available2017-06-09T17:18:07Z
    date copyright2006/04/01
    date issued2006
    identifier issn0022-3670
    identifier otherams-82753.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225902
    description abstractThe seasonal and interannual variations in the export of Labrador Sea Water (LSW), and in the heat and freshwater transport through the central Labrador Sea, are examined for two different periods: from 1964 to 1974, using Ocean Weather Station Bravo data, and from 1996 to 2000, using data collected from profiling floats. A typical seasonal cycle involves a 300-m thickening of LSW (convection) followed by an equivalent thinning (restratification). Restratification is characterized by a drift of properties toward boundary current values that is indicative of a vigorous lateral exchange. The net result is a convergence of heat and salt, between 200 and 700 m, that balances the net surface heat loss to the atmosphere and partially offsets the surface freshwater accumulation due to surface, lateral exchange. Interannual variations in the export of LSW can be explained by taking into account changes in the central Labrador Sea?boundary current density gradient, which governs the lateral exchange. Interannual variations in how much heat is converged into the region, on the other hand, mostly reflect changes in the temperature of LSW. This only partly explains, however, the increased convergence of heat that occurs during the late 1990s. In years in which convection does not occur, restratification trends continue throughout the entire year, albeit at a reduced rate.
    publisherAmerican Meteorological Society
    titleHeat and Freshwater Transport through the Central Labrador Sea
    typeJournal Paper
    journal volume36
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2875.1
    journal fristpage606
    journal lastpage628
    treeJournal of Physical Oceanography:;2006:;Volume( 036 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian