YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Driving Forces of Interleaving in the Baroclinic Front at the Equator

    Source: Journal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 012::page 2501
    Author:
    Kuzmina, Natalia
    ,
    Lee, Jae Hak
    DOI: 10.1175/JPO2828.1
    Publisher: American Meteorological Society
    Abstract: The different types of instability in the equatorial ?-plane approximation are analyzed by means of a 2D linear stability problem. The double-diffusive (DD) and diffusive/baroclinic (2D baroclinic and McIntyre) instabilities are shown not to develop if contours of the mean salinity/density have a parabolic, symmetrical-relative-to-the-equator shape. Using modeling results, an illustrative scheme of Equatorial Undercurrent (EUC) regions where different types of instability can develop is presented and subsequently applied to understand the driving forces of the intrusions observed in a closed spaced CTD section, located between the equator and 1°N. Long coherence intrusions are situated within two isopycnal layers, aligned to 25 (layer 1) and 26.3 (layer 2) σT, where the vertical shear is low. It was shown from the model that the layer-1 intrusions being observed in the midlayer of the EUC where the mean horizontal gradient of salinity is approximately constant are likely generated by a combined effect of DD instability and instability due to linear horizontal shear. The layer-2 intrusions being observed in the lower part of EUC where the mean salinity contours have a parabolic shape likely arise because of linear horizontal shear only, while double diffusion can be considered as an effect that increases the growth rate of unstable modes. Special attention is focused on two different parts of the EUC in the mixing of the thermocline. It is noted that the EUC only makes the mass transfer by long coherence intrusions in certain layers where the vertical shear is small. Conversely, the EUC contributes to the growth rate of unstable modes due to the horizontal linear shear.
    • Download: (1.338Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Driving Forces of Interleaving in the Baroclinic Front at the Equator

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225850
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKuzmina, Natalia
    contributor authorLee, Jae Hak
    date accessioned2017-06-09T17:18:00Z
    date available2017-06-09T17:18:00Z
    date copyright2005/12/01
    date issued2005
    identifier issn0022-3670
    identifier otherams-82706.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225850
    description abstractThe different types of instability in the equatorial ?-plane approximation are analyzed by means of a 2D linear stability problem. The double-diffusive (DD) and diffusive/baroclinic (2D baroclinic and McIntyre) instabilities are shown not to develop if contours of the mean salinity/density have a parabolic, symmetrical-relative-to-the-equator shape. Using modeling results, an illustrative scheme of Equatorial Undercurrent (EUC) regions where different types of instability can develop is presented and subsequently applied to understand the driving forces of the intrusions observed in a closed spaced CTD section, located between the equator and 1°N. Long coherence intrusions are situated within two isopycnal layers, aligned to 25 (layer 1) and 26.3 (layer 2) σT, where the vertical shear is low. It was shown from the model that the layer-1 intrusions being observed in the midlayer of the EUC where the mean horizontal gradient of salinity is approximately constant are likely generated by a combined effect of DD instability and instability due to linear horizontal shear. The layer-2 intrusions being observed in the lower part of EUC where the mean salinity contours have a parabolic shape likely arise because of linear horizontal shear only, while double diffusion can be considered as an effect that increases the growth rate of unstable modes. Special attention is focused on two different parts of the EUC in the mixing of the thermocline. It is noted that the EUC only makes the mass transfer by long coherence intrusions in certain layers where the vertical shear is small. Conversely, the EUC contributes to the growth rate of unstable modes due to the horizontal linear shear.
    publisherAmerican Meteorological Society
    titleDriving Forces of Interleaving in the Baroclinic Front at the Equator
    typeJournal Paper
    journal volume35
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2828.1
    journal fristpage2501
    journal lastpage2519
    treeJournal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian