YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Relationships between Tracer Ages and Potential Vorticity in Unsteady Wind-Driven Circulations

    Source: Journal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 011::page 2250
    Author:
    Zhang, Hong
    ,
    Haine, Thomas W. N.
    ,
    Waugh, Darryn W.
    DOI: 10.1175/JPO2812.1
    Publisher: American Meteorological Society
    Abstract: The relationships between different tracer ages and between tracer age and potential vorticity are examined by simulating barotropic double-gyre circulations. The unsteady model flow crudely represents aspects of the midlatitude, middepth ocean circulation including inhomogeneous and anisotropic variability. Temporal variations range in scale from weeks to years, although the statistics are stationary. These variations have a large impact on the time-averaged tracer age fields. Transport properties of the tracer age fields that have been proved for steady flow are shown to also apply to unsteady flow and are illustrated in this circulation. Variability of tracer ages from ideal age tracer, linear, and exponential transient tracers is highly coordinated in phase and amplitude and is explained using simple theory. These relationships between different tracer ages are of practical benefit to the problem of interpreting tracer ages from the real ocean or from general circulation models. There is also a close link between temporal anomalies of tracer age and potential vorticity throughout a significant fraction of the domain. There are highly significant anticorrelations between ideal age and potential vorticity in the subtropical gyre and midbasin jet region, but correlation in the central subpolar gyre and eastern part of the domain is not significant. The existence of the relationship is insensitive to the character of the flow, the tracer sources, and the potential vorticity dynamics. Its structure may be understood by considering the different time-mean states of the tracer age and potential vorticity, the different tracer sources and sinks, and the effect of variability in the flow. Prediction of the correlation without knowledge of the time-mean fields is a harder problem, however. Detecting the correlation between potential vorticity and tracer age in the real ocean will be difficult with typical synoptic oceanographic transect data that are well-sampled in space, but sparse in time. Nevertheless, it is reasonable to suppose the correlation exists in some places.
    • Download: (1.544Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Relationships between Tracer Ages and Potential Vorticity in Unsteady Wind-Driven Circulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225831
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorZhang, Hong
    contributor authorHaine, Thomas W. N.
    contributor authorWaugh, Darryn W.
    date accessioned2017-06-09T17:17:57Z
    date available2017-06-09T17:17:57Z
    date copyright2005/11/01
    date issued2005
    identifier issn0022-3670
    identifier otherams-82690.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225831
    description abstractThe relationships between different tracer ages and between tracer age and potential vorticity are examined by simulating barotropic double-gyre circulations. The unsteady model flow crudely represents aspects of the midlatitude, middepth ocean circulation including inhomogeneous and anisotropic variability. Temporal variations range in scale from weeks to years, although the statistics are stationary. These variations have a large impact on the time-averaged tracer age fields. Transport properties of the tracer age fields that have been proved for steady flow are shown to also apply to unsteady flow and are illustrated in this circulation. Variability of tracer ages from ideal age tracer, linear, and exponential transient tracers is highly coordinated in phase and amplitude and is explained using simple theory. These relationships between different tracer ages are of practical benefit to the problem of interpreting tracer ages from the real ocean or from general circulation models. There is also a close link between temporal anomalies of tracer age and potential vorticity throughout a significant fraction of the domain. There are highly significant anticorrelations between ideal age and potential vorticity in the subtropical gyre and midbasin jet region, but correlation in the central subpolar gyre and eastern part of the domain is not significant. The existence of the relationship is insensitive to the character of the flow, the tracer sources, and the potential vorticity dynamics. Its structure may be understood by considering the different time-mean states of the tracer age and potential vorticity, the different tracer sources and sinks, and the effect of variability in the flow. Prediction of the correlation without knowledge of the time-mean fields is a harder problem, however. Detecting the correlation between potential vorticity and tracer age in the real ocean will be difficult with typical synoptic oceanographic transect data that are well-sampled in space, but sparse in time. Nevertheless, it is reasonable to suppose the correlation exists in some places.
    publisherAmerican Meteorological Society
    titleRelationships between Tracer Ages and Potential Vorticity in Unsteady Wind-Driven Circulations
    typeJournal Paper
    journal volume35
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2812.1
    journal fristpage2250
    journal lastpage2267
    treeJournal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian