YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energy Fluxes due to the Surface and Internal Tides in Knight Inlet, British Columbia

    Source: Journal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 011::page 2219
    Author:
    Stacey, Michael W.
    ,
    Pond, S.
    DOI: 10.1175/JPO2795.1
    Publisher: American Meteorological Society
    Abstract: A laterally integrated (two dimensional) nonlinear numerical model is used to examine the flux of M2 tidal energy in Knight Inlet. The simulated flux of tidal energy into the inlet is somewhat smaller than that estimated using the change in phase of the M2 tidal height along the inlet, a method that does not account for the effect of the internal tide on the surface elevation. The simulated energy flux into the inlet is close to the energy flux of the internal tide away from the sill determined from observations using an acoustic Doppler current profiler (ADCP). The net flux due to the internal tide is significantly less than (<1/2 of) the rate at which energy is removed from the surface tide. Earlier linear models of the internal tide produced energy fluxes that agreed with those estimated from the phase change of the tidal height but were larger than the fluxes that could be found in the observations. The reason for this discrepancy is not that these simple models neglected nonlinear effects, but rather that they did not take reflections of the internal tide into account. Also, the simulated flux of energy into the inlet less the net flux of internal tidal energy away from the sill is about equal to the simulated dissipation within 2 km on either side of the sill. The simulated net flux of internal tidal energy away from the sill is in agreement with the flux determined from the ADCP observations on the downinlet side of the sill, but not on the upinlet side of the sill. A possible explanation is that only the first internal mode (which is surface intensified) was important on the downinlet side but the first three internal modes were important on the upinlet side. The flux calculation using the ADCP observations took variations in the inlet width into account but did not take depth variations into account; thus, the reflection coefficients of the second and third modes may have been underestimated.
    • Download: (294.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energy Fluxes due to the Surface and Internal Tides in Knight Inlet, British Columbia

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225813
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorStacey, Michael W.
    contributor authorPond, S.
    date accessioned2017-06-09T17:17:55Z
    date available2017-06-09T17:17:55Z
    date copyright2005/11/01
    date issued2005
    identifier issn0022-3670
    identifier otherams-82673.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225813
    description abstractA laterally integrated (two dimensional) nonlinear numerical model is used to examine the flux of M2 tidal energy in Knight Inlet. The simulated flux of tidal energy into the inlet is somewhat smaller than that estimated using the change in phase of the M2 tidal height along the inlet, a method that does not account for the effect of the internal tide on the surface elevation. The simulated energy flux into the inlet is close to the energy flux of the internal tide away from the sill determined from observations using an acoustic Doppler current profiler (ADCP). The net flux due to the internal tide is significantly less than (<1/2 of) the rate at which energy is removed from the surface tide. Earlier linear models of the internal tide produced energy fluxes that agreed with those estimated from the phase change of the tidal height but were larger than the fluxes that could be found in the observations. The reason for this discrepancy is not that these simple models neglected nonlinear effects, but rather that they did not take reflections of the internal tide into account. Also, the simulated flux of energy into the inlet less the net flux of internal tidal energy away from the sill is about equal to the simulated dissipation within 2 km on either side of the sill. The simulated net flux of internal tidal energy away from the sill is in agreement with the flux determined from the ADCP observations on the downinlet side of the sill, but not on the upinlet side of the sill. A possible explanation is that only the first internal mode (which is surface intensified) was important on the downinlet side but the first three internal modes were important on the upinlet side. The flux calculation using the ADCP observations took variations in the inlet width into account but did not take depth variations into account; thus, the reflection coefficients of the second and third modes may have been underestimated.
    publisherAmerican Meteorological Society
    titleEnergy Fluxes due to the Surface and Internal Tides in Knight Inlet, British Columbia
    typeJournal Paper
    journal volume35
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2795.1
    journal fristpage2219
    journal lastpage2227
    treeJournal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian