YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Origins and Dynamics of the 90-Day and 30–60-Day Variations in the Equatorial Indian Ocean

    Source: Journal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 005::page 708
    Author:
    Han, Weiqing
    DOI: 10.1175/JPO2725.1
    Publisher: American Meteorological Society
    Abstract: Sea level observations in the equatorial Indian Ocean show a dominant spectral peak at 90 days and secondary peaks at 30?60 days over an intraseasonal period (20?90 days). A detailed investigation of the origins and dynamics of these variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Indian Ocean basin for the period 1988?2001: one is forced by NCEP 3-day mean forcing fields together with the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) pentad precipitation, and the other is forced by monthly mean fields. To help to understand the role played by the wind-driven equatorial wave dynamics, a linear continuously stratified ocean model is also used. Both the observed and modeled 90-day sea level anomaly fields and HYCOM surface current clearly show equatorial Kelvin and first-meridional-mode Rossby wave structures that are forced by the 90-day winds. The wind amplitude at the 90-day period, however, is weaker than that for the 30?60-day period, suggesting that the equatorial Indian Ocean selectively responds to the 90-day winds. This selective response arises mainly from the resonant excitation of the second-baroclinic-mode (n = 2) waves by the 90-day winds. In this case, Rossby waves reflected from the eastern ocean boundary enhance the directly forced response in the ocean interior, strengthening the 90-day peak. In addition, the directly forced response increases monotonically with the increase of forcing period, contributing to the larger variances of currents and sea level at 90 days. Two factors account for this monotonic increase in directly forced response. First, at lower frequency, both Rossby and Kelvin waves associated with the low-order baroclinic modes have longer wavelengths, which are more efficiently excited by the larger-scale winds. Second, responses of the high-order modes directly follow the local winds, and their amplitudes are proportional to both forcing period and wind strength. Although most energy is surface trapped, there is a significant amount that propagates through the pycnocline into the deep ocean. The dominance of the 90-day peak occurs not only at the surface but also in the deeper layers down to 600 m. In the deeper ocean, both the directly forced response and reflected waves associated with the first two baroclinic modes contribute to the 90-day variation. Spectra of the observed sea surface temperature (SST) also show a 90-day peak, likely a result of the selective response of the equatorial Indian Ocean at the 90-day period. Near the surface, the spectral peaks of currents and sea level at the 30?60-day period are directly forced by winds that peak at 30?60 days. In the deeper layers, both directly forced and reflected waves associated with the first two baroclinic modes contribute. Oceanic instabilities can have significant contributions only near the western boundary and near 5°N south of Sri Lanka.
    • Download: (2.309Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Origins and Dynamics of the 90-Day and 30–60-Day Variations in the Equatorial Indian Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225736
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorHan, Weiqing
    date accessioned2017-06-09T17:17:45Z
    date available2017-06-09T17:17:45Z
    date copyright2005/05/01
    date issued2005
    identifier issn0022-3670
    identifier otherams-82603.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225736
    description abstractSea level observations in the equatorial Indian Ocean show a dominant spectral peak at 90 days and secondary peaks at 30?60 days over an intraseasonal period (20?90 days). A detailed investigation of the origins and dynamics of these variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Indian Ocean basin for the period 1988?2001: one is forced by NCEP 3-day mean forcing fields together with the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) pentad precipitation, and the other is forced by monthly mean fields. To help to understand the role played by the wind-driven equatorial wave dynamics, a linear continuously stratified ocean model is also used. Both the observed and modeled 90-day sea level anomaly fields and HYCOM surface current clearly show equatorial Kelvin and first-meridional-mode Rossby wave structures that are forced by the 90-day winds. The wind amplitude at the 90-day period, however, is weaker than that for the 30?60-day period, suggesting that the equatorial Indian Ocean selectively responds to the 90-day winds. This selective response arises mainly from the resonant excitation of the second-baroclinic-mode (n = 2) waves by the 90-day winds. In this case, Rossby waves reflected from the eastern ocean boundary enhance the directly forced response in the ocean interior, strengthening the 90-day peak. In addition, the directly forced response increases monotonically with the increase of forcing period, contributing to the larger variances of currents and sea level at 90 days. Two factors account for this monotonic increase in directly forced response. First, at lower frequency, both Rossby and Kelvin waves associated with the low-order baroclinic modes have longer wavelengths, which are more efficiently excited by the larger-scale winds. Second, responses of the high-order modes directly follow the local winds, and their amplitudes are proportional to both forcing period and wind strength. Although most energy is surface trapped, there is a significant amount that propagates through the pycnocline into the deep ocean. The dominance of the 90-day peak occurs not only at the surface but also in the deeper layers down to 600 m. In the deeper ocean, both the directly forced response and reflected waves associated with the first two baroclinic modes contribute to the 90-day variation. Spectra of the observed sea surface temperature (SST) also show a 90-day peak, likely a result of the selective response of the equatorial Indian Ocean at the 90-day period. Near the surface, the spectral peaks of currents and sea level at the 30?60-day period are directly forced by winds that peak at 30?60 days. In the deeper layers, both directly forced and reflected waves associated with the first two baroclinic modes contribute. Oceanic instabilities can have significant contributions only near the western boundary and near 5°N south of Sri Lanka.
    publisherAmerican Meteorological Society
    titleOrigins and Dynamics of the 90-Day and 30–60-Day Variations in the Equatorial Indian Ocean
    typeJournal Paper
    journal volume35
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2725.1
    journal fristpage708
    journal lastpage728
    treeJournal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian