YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Simplified 3D Oceanic Model Assimilating Geostrophic Currents: Application to the POMME Experiment

    Source: Journal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 005::page 628
    Author:
    Giordani, Hervé
    ,
    Caniaux, Guy
    ,
    Prieur, Louis
    DOI: 10.1175/JPO2724.1
    Publisher: American Meteorological Society
    Abstract: A simplified oceanic model is developed to easily perform cheap and realistic mesoscale simulations on an annual scale. This simplified three-dimensional oceanic model is obtained by degenerating the primitive equations system by prescribing continuously analysis-derived geostrophic currents Ug into the momentum equation in substitution of the horizontal pressure gradient. Simplification is provided by a time sequence of Ug called guide, which is used as a low-resolution and low-frequency interpolator. This model is thus necessarily coupled to systems providing geostrophic currents?that is, ocean circulation models, analyzed/reanalyzed fields, or climatologies. In this model, the mass and currents fields are constrained to adjust to the geostrophic guide at all scales. The vertical velocity is deduced from the vorticity equation, which ensures the coherence between the vertical motion and the geostrophic structures evolution. Horizontal and vertical advection are the coupling processes that can be activated independently from each other and offer the possibility to (i) continuously derive a three-dimensional model when all processes are activated, (ii) understand how some retroaction loops are generated, and (iii) study development of structures as a function of the geostrophic environment. The model was tested during a 50-day lasting simulation over the Program Océan Multidisciplinaire Méso Echelle (POMME) experiment (northeast Atlantic Ocean, September 2000?October 2001). Optimal analyzed geostrophic currents were derived weekly during POMME from a quasigeostrophic model assimilating altimeter data. Comparison with independent in situ and satellite data indicates that this simulation is very realistic and does not drift, thanks to the prescribed geostrophic guide.
    • Download: (1.237Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Simplified 3D Oceanic Model Assimilating Geostrophic Currents: Application to the POMME Experiment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225735
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorGiordani, Hervé
    contributor authorCaniaux, Guy
    contributor authorPrieur, Louis
    date accessioned2017-06-09T17:17:45Z
    date available2017-06-09T17:17:45Z
    date copyright2005/05/01
    date issued2005
    identifier issn0022-3670
    identifier otherams-82602.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225735
    description abstractA simplified oceanic model is developed to easily perform cheap and realistic mesoscale simulations on an annual scale. This simplified three-dimensional oceanic model is obtained by degenerating the primitive equations system by prescribing continuously analysis-derived geostrophic currents Ug into the momentum equation in substitution of the horizontal pressure gradient. Simplification is provided by a time sequence of Ug called guide, which is used as a low-resolution and low-frequency interpolator. This model is thus necessarily coupled to systems providing geostrophic currents?that is, ocean circulation models, analyzed/reanalyzed fields, or climatologies. In this model, the mass and currents fields are constrained to adjust to the geostrophic guide at all scales. The vertical velocity is deduced from the vorticity equation, which ensures the coherence between the vertical motion and the geostrophic structures evolution. Horizontal and vertical advection are the coupling processes that can be activated independently from each other and offer the possibility to (i) continuously derive a three-dimensional model when all processes are activated, (ii) understand how some retroaction loops are generated, and (iii) study development of structures as a function of the geostrophic environment. The model was tested during a 50-day lasting simulation over the Program Océan Multidisciplinaire Méso Echelle (POMME) experiment (northeast Atlantic Ocean, September 2000?October 2001). Optimal analyzed geostrophic currents were derived weekly during POMME from a quasigeostrophic model assimilating altimeter data. Comparison with independent in situ and satellite data indicates that this simulation is very realistic and does not drift, thanks to the prescribed geostrophic guide.
    publisherAmerican Meteorological Society
    titleA Simplified 3D Oceanic Model Assimilating Geostrophic Currents: Application to the POMME Experiment
    typeJournal Paper
    journal volume35
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2724.1
    journal fristpage628
    journal lastpage644
    treeJournal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian