YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diagnosing Heat and Vorticity Budgets of Annual Coupled Rossby Waves

    Source: Journal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 007::page 1173
    Author:
    White, Warren B.
    ,
    Annis, Jeffrey L.
    DOI: 10.1175/JPO2711.1
    Publisher: American Meteorological Society
    Abstract: Annual coupled Rossby waves are generated at the west coast of Australia and propagate westward across the eastern Indian Ocean from 10° to 30°S in covarying sea level height (SLH), sea surface temperature (SST), and meridional surface wind (MSW) residuals, generally traveling slower than uncoupled Rossby waves while increasing amplitude. The waves decouple in the western Indian Ocean as SST and SLH residuals become decorrelated, with wave amplitudes decreasing and westward phase speeds increasing. Here, the ocean and atmosphere thermal and vorticity budgets of the coupled Rossby waves in the eastern Indian Ocean along 20°S are diagnosed. In the upper ocean, these diagnostics find the residual SST tendency driven by the residual meridional geostrophic advection of mean temperature with warm SST residuals dissipated by upward latent heat flux to the atmosphere. In the troposphere, these upward latent heat fluxes drive mid-to-upper-level residual diabatic heating via excess condensation, balanced there by upward residual vertical thermal advection. The resulting upward residual vertical velocity drives residual upper-level divergence and lower-level convergence, the latter balanced in the troposphere vorticity budget by the residual meridional advection of planetary vorticity. This yields poleward MSW residuals collocated with warm SST residuals, as observed. The SLH tendency is modified by a positive feedback from wind stress curl residuals, the latter acting to increase the amplitude and decrease the westward phase speed of the wave. These diagnostics allow a more exact analytical model for coupled Rossby waves to be constructed, yielding wave characteristics as observed.
    • Download: (2.507Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diagnosing Heat and Vorticity Budgets of Annual Coupled Rossby Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225719
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWhite, Warren B.
    contributor authorAnnis, Jeffrey L.
    date accessioned2017-06-09T17:17:43Z
    date available2017-06-09T17:17:43Z
    date copyright2005/07/01
    date issued2005
    identifier issn0022-3670
    identifier otherams-82589.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225719
    description abstractAnnual coupled Rossby waves are generated at the west coast of Australia and propagate westward across the eastern Indian Ocean from 10° to 30°S in covarying sea level height (SLH), sea surface temperature (SST), and meridional surface wind (MSW) residuals, generally traveling slower than uncoupled Rossby waves while increasing amplitude. The waves decouple in the western Indian Ocean as SST and SLH residuals become decorrelated, with wave amplitudes decreasing and westward phase speeds increasing. Here, the ocean and atmosphere thermal and vorticity budgets of the coupled Rossby waves in the eastern Indian Ocean along 20°S are diagnosed. In the upper ocean, these diagnostics find the residual SST tendency driven by the residual meridional geostrophic advection of mean temperature with warm SST residuals dissipated by upward latent heat flux to the atmosphere. In the troposphere, these upward latent heat fluxes drive mid-to-upper-level residual diabatic heating via excess condensation, balanced there by upward residual vertical thermal advection. The resulting upward residual vertical velocity drives residual upper-level divergence and lower-level convergence, the latter balanced in the troposphere vorticity budget by the residual meridional advection of planetary vorticity. This yields poleward MSW residuals collocated with warm SST residuals, as observed. The SLH tendency is modified by a positive feedback from wind stress curl residuals, the latter acting to increase the amplitude and decrease the westward phase speed of the wave. These diagnostics allow a more exact analytical model for coupled Rossby waves to be constructed, yielding wave characteristics as observed.
    publisherAmerican Meteorological Society
    titleDiagnosing Heat and Vorticity Budgets of Annual Coupled Rossby Waves
    typeJournal Paper
    journal volume35
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2711.1
    journal fristpage1173
    journal lastpage1189
    treeJournal of Physical Oceanography:;2005:;Volume( 035 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian