YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Eddy-Driven Thermocline

    Source: Journal of Physical Oceanography:;2004:;Volume( 034 ):;issue: 012::page 2642
    Author:
    Cessi, Paola
    ,
    Fantini, Maurizio
    DOI: 10.1175/JPO2657.1
    Publisher: American Meteorological Society
    Abstract: The role of baroclinic eddies in transferring thermal gradients laterally, and thus determining the stratification of the ocean, is examined. The hypothesis is that the density differences imposed at the surface by differential heating are a source of available potential energy that can be partially released by mesocale eddies with horizontal scales on the order of 100 km. Eddy fluxes balance the diapycnal mixing of heat and thus determine the vertical scale of penetration of horizontal thermal gradients (i.e., the depth of the thermocline). This conjecture is in contrast with the current thinking that the deep stratification is determined by a balance between diapycnal mixing and the large-scale thermohaline circulation. Eddy processes are analyzed in the context of a rapidly rotating primitive equation flow driven by specified surface temperature, with isotropic diffusion and viscosity. The barotropic component of the eddies is found to be responsible for most of the heat flux, and so the eddy transport is horizontal rather than isopycnal. This eddy transport takes place in the shallow surface layer where eddies, as well as the mean temperature, undergo diabatic, irreversible mixing. Scaling laws for the depth of the thermocline as a function of the external parameters are proposed. In the classical thermocline theory, the depth of the thermocline depends on the diffusivity, the rotation rate, and the imposed temperature gradient. In this study the authors find an additional dependence on the viscosity and on the domain width.
    • Download: (531.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Eddy-Driven Thermocline

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225660
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorCessi, Paola
    contributor authorFantini, Maurizio
    date accessioned2017-06-09T17:17:36Z
    date available2017-06-09T17:17:36Z
    date copyright2004/12/01
    date issued2004
    identifier issn0022-3670
    identifier otherams-82535.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225660
    description abstractThe role of baroclinic eddies in transferring thermal gradients laterally, and thus determining the stratification of the ocean, is examined. The hypothesis is that the density differences imposed at the surface by differential heating are a source of available potential energy that can be partially released by mesocale eddies with horizontal scales on the order of 100 km. Eddy fluxes balance the diapycnal mixing of heat and thus determine the vertical scale of penetration of horizontal thermal gradients (i.e., the depth of the thermocline). This conjecture is in contrast with the current thinking that the deep stratification is determined by a balance between diapycnal mixing and the large-scale thermohaline circulation. Eddy processes are analyzed in the context of a rapidly rotating primitive equation flow driven by specified surface temperature, with isotropic diffusion and viscosity. The barotropic component of the eddies is found to be responsible for most of the heat flux, and so the eddy transport is horizontal rather than isopycnal. This eddy transport takes place in the shallow surface layer where eddies, as well as the mean temperature, undergo diabatic, irreversible mixing. Scaling laws for the depth of the thermocline as a function of the external parameters are proposed. In the classical thermocline theory, the depth of the thermocline depends on the diffusivity, the rotation rate, and the imposed temperature gradient. In this study the authors find an additional dependence on the viscosity and on the domain width.
    publisherAmerican Meteorological Society
    titleThe Eddy-Driven Thermocline
    typeJournal Paper
    journal volume34
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2657.1
    journal fristpage2642
    journal lastpage2658
    treeJournal of Physical Oceanography:;2004:;Volume( 034 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian