YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Dispersion Relation for Planetary Waves in the Presence of Mean Flow and Topography. Part I: Analytical Theory and One-Dimensional Examples

    Source: Journal of Physical Oceanography:;2004:;Volume( 034 ):;issue: 012::page 2692
    Author:
    Killworth, Peter D.
    ,
    Blundell, Jeffrey R.
    DOI: 10.1175/JPO2635.1
    Publisher: American Meteorological Society
    Abstract: An eigenvalue problem for the dispersion relation for planetary waves in the presence of mean flow and bottom topographic gradients is derived, under the Wentzel?Kramers?Brillouin?Jeffreys (WKBJ) assumption, for frequencies that are low when compared with the inertial frequency. Examples are given for the World Ocean that show a rich variety of behavior, including no frequency (or latitudinal) cutoff, solutions trapped at certain depths, coalescence of waves, and a lack of dispersion for most short waves.
    • Download: (571.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Dispersion Relation for Planetary Waves in the Presence of Mean Flow and Topography. Part I: Analytical Theory and One-Dimensional Examples

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225637
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKillworth, Peter D.
    contributor authorBlundell, Jeffrey R.
    date accessioned2017-06-09T17:17:31Z
    date available2017-06-09T17:17:31Z
    date copyright2004/12/01
    date issued2004
    identifier issn0022-3670
    identifier otherams-82514.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225637
    description abstractAn eigenvalue problem for the dispersion relation for planetary waves in the presence of mean flow and bottom topographic gradients is derived, under the Wentzel?Kramers?Brillouin?Jeffreys (WKBJ) assumption, for frequencies that are low when compared with the inertial frequency. Examples are given for the World Ocean that show a rich variety of behavior, including no frequency (or latitudinal) cutoff, solutions trapped at certain depths, coalescence of waves, and a lack of dispersion for most short waves.
    publisherAmerican Meteorological Society
    titleThe Dispersion Relation for Planetary Waves in the Presence of Mean Flow and Topography. Part I: Analytical Theory and One-Dimensional Examples
    typeJournal Paper
    journal volume34
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2635.1
    journal fristpage2692
    journal lastpage2711
    treeJournal of Physical Oceanography:;2004:;Volume( 034 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian