YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Formation of the South Pacific Shallow Salinity Minimum: A Southern Ocean Pathway to the Tropical Pacific

    Source: Journal of Physical Oceanography:;2004:;Volume( 034 ):;issue: 011::page 2398
    Author:
    Karstensen, Johannes
    DOI: 10.1175/JPO2634.1
    Publisher: American Meteorological Society
    Abstract: In the eastern South Pacific Ocean, at a depth of about 200 m, a salinity minimum is found. This minimum is associated with a particular water mass, the ?Shallow Salinity Minimum Water? (SSMW). SSMW outcrops in a fresh tongue (Smin) centered at about 45°S. The Smin appears to emanate from the eastern boundary, against the mean flow. The watermass transformation that creates SSMW and Smin is investigated here. The Smin and SSMW are transformed from saltier and warmer waters originating from the western South Pacific. The freshening and cooling occur when the water is advected eastward at the poleward side of the subtropical gyre. Sources of freshening and cooling are air?sea exchange and advection of water from south of the subtropical gyre. A freshwater and heat budget for the mixed layer reveals that both sources equally contribute to the watermass transformation in the mixed layer. The freshened and cooled mixed layer water is subducted into the gyre interior along the southern rim of the subtropical gyre. Subduction into the zonal flow restricts the transformation of interior properties to diffusion only. A simple advection/diffusion balance reveals diffusion coefficients of order 2000 m2 s?1. The tongue shape of the Smin is explained from a dynamical viewpoint because no relation to a positive precipitation?evaporation balance was found. Freshest Smin values are found to coincide with slowest eastward mixed layer flow that accumulates the largest amounts of freshwater in the mixed layer and creates the fresh tongue at the sea surface. Although the SSMW is the densest and freshest mode of water subducted along the South American coast, the freshening and cooling in the South Pacific affect a whole range of densities (25.0?26.8 kg m?3). The transformed water turns northward with the gyre circulation and contributes to the hydrographic structure of the gyre farther north. Because the South Pacific provides most of the source waters that upwell along the equatorial Pacific, variability in South Pacific hydrography may influence equatorial Pacific hydrography. Because one-half of the transformation is found to be controlled through Ekman transport, variability in wind forcing at the southern rim of the subtropical gyre may be a source for variability of the equatorial Pacific.
    • Download: (1.822Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Formation of the South Pacific Shallow Salinity Minimum: A Southern Ocean Pathway to the Tropical Pacific

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225636
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKarstensen, Johannes
    date accessioned2017-06-09T17:17:31Z
    date available2017-06-09T17:17:31Z
    date copyright2004/11/01
    date issued2004
    identifier issn0022-3670
    identifier otherams-82513.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225636
    description abstractIn the eastern South Pacific Ocean, at a depth of about 200 m, a salinity minimum is found. This minimum is associated with a particular water mass, the ?Shallow Salinity Minimum Water? (SSMW). SSMW outcrops in a fresh tongue (Smin) centered at about 45°S. The Smin appears to emanate from the eastern boundary, against the mean flow. The watermass transformation that creates SSMW and Smin is investigated here. The Smin and SSMW are transformed from saltier and warmer waters originating from the western South Pacific. The freshening and cooling occur when the water is advected eastward at the poleward side of the subtropical gyre. Sources of freshening and cooling are air?sea exchange and advection of water from south of the subtropical gyre. A freshwater and heat budget for the mixed layer reveals that both sources equally contribute to the watermass transformation in the mixed layer. The freshened and cooled mixed layer water is subducted into the gyre interior along the southern rim of the subtropical gyre. Subduction into the zonal flow restricts the transformation of interior properties to diffusion only. A simple advection/diffusion balance reveals diffusion coefficients of order 2000 m2 s?1. The tongue shape of the Smin is explained from a dynamical viewpoint because no relation to a positive precipitation?evaporation balance was found. Freshest Smin values are found to coincide with slowest eastward mixed layer flow that accumulates the largest amounts of freshwater in the mixed layer and creates the fresh tongue at the sea surface. Although the SSMW is the densest and freshest mode of water subducted along the South American coast, the freshening and cooling in the South Pacific affect a whole range of densities (25.0?26.8 kg m?3). The transformed water turns northward with the gyre circulation and contributes to the hydrographic structure of the gyre farther north. Because the South Pacific provides most of the source waters that upwell along the equatorial Pacific, variability in South Pacific hydrography may influence equatorial Pacific hydrography. Because one-half of the transformation is found to be controlled through Ekman transport, variability in wind forcing at the southern rim of the subtropical gyre may be a source for variability of the equatorial Pacific.
    publisherAmerican Meteorological Society
    titleFormation of the South Pacific Shallow Salinity Minimum: A Southern Ocean Pathway to the Tropical Pacific
    typeJournal Paper
    journal volume34
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO2634.1
    journal fristpage2398
    journal lastpage2412
    treeJournal of Physical Oceanography:;2004:;Volume( 034 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian