YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Scaling and Distributional Properties of Precipitation Interamount Times

    Source: Journal of Hydrometeorology:;2017:;Volume( 018 ):;issue: 004::page 1167
    Author:
    Schleiss, Marc
    DOI: 10.1175/JHM-D-16-0221.1
    Publisher: American Meteorological Society
    Abstract: he scaling and distributional properties of precipitation interamount times (IATs) are investigated using 10 years of high-resolution rain gauge observations from the U.S. Climate Reference Network. Results show that IATs above 200 mm tend to be approximately uncorrelated and normally distributed. As one moves toward smaller scales, autocorrelation and skewness increase and distributions progressively evolve into Weibull, Gamma, lognormal, and Pareto. This procession is interpreted as a sign of increasing complexity from large to small scales in a system composed of many interacting components. It shows that, as one approaches finer scales, IATs take over more of the characteristics of power-law distributions and (multi)fractals. Regression analysis on the log moments reveals that IATs generally exhibit better scaling, that is, smaller departures from multifractality, than precipitation amounts over the same range of scales. The improvement is attributed to the fact that IATs, unlike rainfall rates, always remain positive, no matter how small the scale. In particular, the scaling is shown to be more resilient to dry periods within rain events. Nevertheless, most analyzed IAT time series still exhibited a breakpoint at about 20 mm (7 days), corresponding to the average lifetime of a low pressure system at midlatitudes. Additional breakpoints in IATs at smaller and larger time scales are possible, but could not be determined unambiguously. The results highlight the potential of IATs as a new and promising tool for the stochastic modeling, simulation, and downscaling of precipitation.
    • Download: (2.558Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Scaling and Distributional Properties of Precipitation Interamount Times

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225604
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorSchleiss, Marc
    date accessioned2017-06-09T17:17:24Z
    date available2017-06-09T17:17:24Z
    date copyright2017/04/01
    date issued2017
    identifier issn1525-755X
    identifier otherams-82485.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225604
    description abstracthe scaling and distributional properties of precipitation interamount times (IATs) are investigated using 10 years of high-resolution rain gauge observations from the U.S. Climate Reference Network. Results show that IATs above 200 mm tend to be approximately uncorrelated and normally distributed. As one moves toward smaller scales, autocorrelation and skewness increase and distributions progressively evolve into Weibull, Gamma, lognormal, and Pareto. This procession is interpreted as a sign of increasing complexity from large to small scales in a system composed of many interacting components. It shows that, as one approaches finer scales, IATs take over more of the characteristics of power-law distributions and (multi)fractals. Regression analysis on the log moments reveals that IATs generally exhibit better scaling, that is, smaller departures from multifractality, than precipitation amounts over the same range of scales. The improvement is attributed to the fact that IATs, unlike rainfall rates, always remain positive, no matter how small the scale. In particular, the scaling is shown to be more resilient to dry periods within rain events. Nevertheless, most analyzed IAT time series still exhibited a breakpoint at about 20 mm (7 days), corresponding to the average lifetime of a low pressure system at midlatitudes. Additional breakpoints in IATs at smaller and larger time scales are possible, but could not be determined unambiguously. The results highlight the potential of IATs as a new and promising tool for the stochastic modeling, simulation, and downscaling of precipitation.
    publisherAmerican Meteorological Society
    titleScaling and Distributional Properties of Precipitation Interamount Times
    typeJournal Paper
    journal volume18
    journal issue4
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-16-0221.1
    journal fristpage1167
    journal lastpage1184
    treeJournal of Hydrometeorology:;2017:;Volume( 018 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian