YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Case Studies of a MODIS-Based Potential Evapotranspiration Input to the Sacramento Soil Moisture Accounting Model

    Source: Journal of Hydrometeorology:;2016:;Volume( 018 ):;issue: 001::page 151
    Author:
    Bowman, Angela L.
    ,
    Franz, Kristie J.
    ,
    Hogue, Terri S.
    DOI: 10.1175/JHM-D-16-0214.1
    Publisher: American Meteorological Society
    Abstract: satellite-based potential evapotranspiration (PET) estimate derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations was tested for input to the spatially lumped and gridded Sacramento Soil Moisture Accounting (SAC-SMA) model. The 15 forecast points within the National Weather Service (NWS) North Central River Forecast Center (NCRFC) forecasting region were the basis for this analysis. Through a series of case studies, the MODIS-derived PET estimate (M-PET) was evaluated for input to the SAC-SMA model by comparing streamflow simulations with those from traditional SAC-SMA evapotranspiration (ET) demand. Two prior studies have evaluated the M-PET data 1) to compute new long-term average ET demand values and 2) to input a time series (i.e., daily time-varying PET) to the NWS Hydrology Laboratory?Research Distributed Hydrologic Model (HL-RDHM), a spatially distributed version of the SAC-SMA model. This current paper presents results from a third test in which the M-PET time series is input to the lumped SAC-SMA model. In all cases, evaluation is between the M-PET data and the long-term average values used by the NWS. Similar to prior studies, results of the current analysis are mixed with improved model evaluation statistics for 4 of 15 basins tested. Of the three cases, using the time-varying M-PET as input to the distributed SAC-SMA model led to the most promising results, with model simulations that are at least as good as those when using the SAC-SMA ET demand. Analyses of the model-simulated ET suggest that the time-varying M-PET input may produce a more physically realistic representation of ET processes in both the lumped and distributed versions of the SAC-SMA model.
    • Download: (368.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Case Studies of a MODIS-Based Potential Evapotranspiration Input to the Sacramento Soil Moisture Accounting Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225601
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorBowman, Angela L.
    contributor authorFranz, Kristie J.
    contributor authorHogue, Terri S.
    date accessioned2017-06-09T17:17:24Z
    date available2017-06-09T17:17:24Z
    date copyright2017/01/01
    date issued2016
    identifier issn1525-755X
    identifier otherams-82482.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225601
    description abstractsatellite-based potential evapotranspiration (PET) estimate derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations was tested for input to the spatially lumped and gridded Sacramento Soil Moisture Accounting (SAC-SMA) model. The 15 forecast points within the National Weather Service (NWS) North Central River Forecast Center (NCRFC) forecasting region were the basis for this analysis. Through a series of case studies, the MODIS-derived PET estimate (M-PET) was evaluated for input to the SAC-SMA model by comparing streamflow simulations with those from traditional SAC-SMA evapotranspiration (ET) demand. Two prior studies have evaluated the M-PET data 1) to compute new long-term average ET demand values and 2) to input a time series (i.e., daily time-varying PET) to the NWS Hydrology Laboratory?Research Distributed Hydrologic Model (HL-RDHM), a spatially distributed version of the SAC-SMA model. This current paper presents results from a third test in which the M-PET time series is input to the lumped SAC-SMA model. In all cases, evaluation is between the M-PET data and the long-term average values used by the NWS. Similar to prior studies, results of the current analysis are mixed with improved model evaluation statistics for 4 of 15 basins tested. Of the three cases, using the time-varying M-PET as input to the distributed SAC-SMA model led to the most promising results, with model simulations that are at least as good as those when using the SAC-SMA ET demand. Analyses of the model-simulated ET suggest that the time-varying M-PET input may produce a more physically realistic representation of ET processes in both the lumped and distributed versions of the SAC-SMA model.
    publisherAmerican Meteorological Society
    titleCase Studies of a MODIS-Based Potential Evapotranspiration Input to the Sacramento Soil Moisture Accounting Model
    typeJournal Paper
    journal volume18
    journal issue1
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-16-0214.1
    journal fristpage151
    journal lastpage158
    treeJournal of Hydrometeorology:;2016:;Volume( 018 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian