YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Spatial and Temporal Statistical Properties of Rainfall in Central Arizona

    Source: Journal of Hydrometeorology:;2016:;Volume( 018 ):;issue: 001::page 227
    Author:
    Mascaro, Giuseppe
    DOI: 10.1175/JHM-D-16-0167.1
    Publisher: American Meteorological Society
    Abstract: he statistical properties of the rainfall regime in central Arizona are investigated using observations from the early 1980s of the Flood Control District of Maricopa County (FCDMC) network, currently consisting of 310 gauges ranging in elevation from 220 to 2325 m MSL. A set of techniques is applied to analyze the properties across a wide range of temporal scales (from 1 min to years) and the associated spatial variability. Rainfall accumulation is characterized by (i) high interannual variability, which is partially explained by teleconnections with El Niño?Southern Oscillation; (ii) marked seasonality, with two distinct maxima in summer (July?September) and winter (November?March); (iii) significant orographic control; and (iv) strong diurnal cycle in summer, peaking in early afternoon at higher elevations and at nighttime in lower desert areas. The annual maximum rainfall intensities occur in the summer months and increase with elevation, suggesting that higher terrain enhances the strength of thermal convective activity. The intergauge correlation of wintertime rainfall is high even at short aggregation times (<1 h) because of the widespread nature of the weather systems, while summer monsoonal thunderstorms are more localized in space and time. Spectral and scale invariance analyses show the presence of different scaling regimes in summer and winter, which are related to the typical meteorological phenomena of the corresponding time scales (frontal systems and isolated convective cells). Results of this work expand previous studies on the dominant meteorological features in the region and support the development of rainfall downscaling models from coarse products of climate, meteorological, or other statistical models.
    • Download: (2.049Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Spatial and Temporal Statistical Properties of Rainfall in Central Arizona

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225572
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorMascaro, Giuseppe
    date accessioned2017-06-09T17:17:19Z
    date available2017-06-09T17:17:19Z
    date copyright2017/01/01
    date issued2016
    identifier issn1525-755X
    identifier otherams-82456.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225572
    description abstracthe statistical properties of the rainfall regime in central Arizona are investigated using observations from the early 1980s of the Flood Control District of Maricopa County (FCDMC) network, currently consisting of 310 gauges ranging in elevation from 220 to 2325 m MSL. A set of techniques is applied to analyze the properties across a wide range of temporal scales (from 1 min to years) and the associated spatial variability. Rainfall accumulation is characterized by (i) high interannual variability, which is partially explained by teleconnections with El Niño?Southern Oscillation; (ii) marked seasonality, with two distinct maxima in summer (July?September) and winter (November?March); (iii) significant orographic control; and (iv) strong diurnal cycle in summer, peaking in early afternoon at higher elevations and at nighttime in lower desert areas. The annual maximum rainfall intensities occur in the summer months and increase with elevation, suggesting that higher terrain enhances the strength of thermal convective activity. The intergauge correlation of wintertime rainfall is high even at short aggregation times (<1 h) because of the widespread nature of the weather systems, while summer monsoonal thunderstorms are more localized in space and time. Spectral and scale invariance analyses show the presence of different scaling regimes in summer and winter, which are related to the typical meteorological phenomena of the corresponding time scales (frontal systems and isolated convective cells). Results of this work expand previous studies on the dominant meteorological features in the region and support the development of rainfall downscaling models from coarse products of climate, meteorological, or other statistical models.
    publisherAmerican Meteorological Society
    titleMultiscale Spatial and Temporal Statistical Properties of Rainfall in Central Arizona
    typeJournal Paper
    journal volume18
    journal issue1
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-16-0167.1
    journal fristpage227
    journal lastpage245
    treeJournal of Hydrometeorology:;2016:;Volume( 018 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian