YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation

    Source: Journal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 009::page 2419
    Author:
    Qiu, Jianxiu
    ,
    Crow, Wade T.
    ,
    Nearing, Grey S.
    DOI: 10.1175/JHM-D-16-0044.1
    Publisher: American Meteorological Society
    Abstract: his study aims to identify the impact of vertical support on the information content of soil moisture (SM) for latent heat flux estimation. This objective is achieved via calculation of the mutual information (MI) content between multiple soil moisture variables (with different vertical supports) and current/future evaporative fraction (EF) using ground-based soil moisture and latent/sensible heat flux observations acquired from the AmeriFlux network within the contiguous United States. Through the intercomparison of MI results from different SM?EF pairs, the general value (for latent heat flux estimation) of superficial soil moisture observations , vertically integrated soil moisture observations , and vertically extrapolated soil moisture time series [soil wetness index (SWI) from a simple low-pass transformation of ] are examined. Results suggest that, contrary to expectations, 2-day averages of and have comparable mutual information with regards to EF. That is, there is no clear evidence that the information content for flux estimation is enhanced via deepening the vertical support of superficial soil moisture observations. In addition, the utility of SWI in monitoring and forecasting EF is partially dependent on the adopted parameterization of time-scale parameter T in the exponential filter. Similar results are obtained when analyses are conducted at the monthly time scale, only with larger error bars. The contrast between the results of this paper and past work focusing on utilizing soil moisture to predict vegetation condition demonstrates that the particular application should be considered when characterizing the information content of soil moisture time series measurements.
    • Download: (1.193Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225496
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorQiu, Jianxiu
    contributor authorCrow, Wade T.
    contributor authorNearing, Grey S.
    date accessioned2017-06-09T17:17:05Z
    date available2017-06-09T17:17:05Z
    date copyright2016/09/01
    date issued2016
    identifier issn1525-755X
    identifier otherams-82388.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225496
    description abstracthis study aims to identify the impact of vertical support on the information content of soil moisture (SM) for latent heat flux estimation. This objective is achieved via calculation of the mutual information (MI) content between multiple soil moisture variables (with different vertical supports) and current/future evaporative fraction (EF) using ground-based soil moisture and latent/sensible heat flux observations acquired from the AmeriFlux network within the contiguous United States. Through the intercomparison of MI results from different SM?EF pairs, the general value (for latent heat flux estimation) of superficial soil moisture observations , vertically integrated soil moisture observations , and vertically extrapolated soil moisture time series [soil wetness index (SWI) from a simple low-pass transformation of ] are examined. Results suggest that, contrary to expectations, 2-day averages of and have comparable mutual information with regards to EF. That is, there is no clear evidence that the information content for flux estimation is enhanced via deepening the vertical support of superficial soil moisture observations. In addition, the utility of SWI in monitoring and forecasting EF is partially dependent on the adopted parameterization of time-scale parameter T in the exponential filter. Similar results are obtained when analyses are conducted at the monthly time scale, only with larger error bars. The contrast between the results of this paper and past work focusing on utilizing soil moisture to predict vegetation condition demonstrates that the particular application should be considered when characterizing the information content of soil moisture time series measurements.
    publisherAmerican Meteorological Society
    titleThe Impact of Vertical Measurement Depth on the Information Content of Soil Moisture for Latent Heat Flux Estimation
    typeJournal Paper
    journal volume17
    journal issue9
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-16-0044.1
    journal fristpage2419
    journal lastpage2430
    treeJournal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian