YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of the Timing of Daily Peak Streamflow during the Melt Season in a Snow-Dominated Watershed

    Source: Journal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 008::page 2225
    Author:
    Chen, Xing
    ,
    Kumar, Mukesh
    ,
    Wang, Rui
    ,
    Winstral, Adam
    ,
    Marks, Danny
    DOI: 10.1175/JHM-D-15-0152.1
    Publisher: American Meteorological Society
    Abstract: revious studies have shown that gauge-observed daily streamflow peak times (DPTs) during spring snowmelt can exhibit distinct temporal shifts through the season. These shifts have been attributed to three processes: 1) melt flux translation through the snowpack or percolation, 2) surface and subsurface flow of melt from the base of snowpacks to streams, and 3) translation of water flux in the streams to stream gauging stations. The goal of this study is to evaluate and quantify how these processes affect observed DPTs variations at the Reynolds Mountain East (RME) research catchment in southwest Idaho, United States. To accomplish this goal, DPTs were simulated for the RME catchment over a period of 25 water years using a modified snowmelt model, iSnobal, and a hydrology model, the Penn State Integrated Hydrologic Model (PIHM). The influence of each controlling process was then evaluated by simulating the DPT with and without the process under consideration. Both intra- and interseasonal variability in DPTs were evaluated. Results indicate that the magnitude of DPTs is dominantly influenced by subsurface flow, whereas the temporal shifts within a season are primarily controlled by percolation through snow. In addition to the three processes previously identified in the literature, processes governing the snowpack ripening time are identified as additionally influencing DPT variability. Results also indicate that the relative dominance of each control varies through the melt season and between wet and dry years. The results could be used for supporting DPTs prediction efforts and for prioritization of observables for DPT determination.
    • Download: (1.766Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of the Timing of Daily Peak Streamflow during the Melt Season in a Snow-Dominated Watershed

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225417
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorChen, Xing
    contributor authorKumar, Mukesh
    contributor authorWang, Rui
    contributor authorWinstral, Adam
    contributor authorMarks, Danny
    date accessioned2017-06-09T17:16:46Z
    date available2017-06-09T17:16:46Z
    date copyright2016/08/01
    date issued2016
    identifier issn1525-755X
    identifier otherams-82316.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225417
    description abstractrevious studies have shown that gauge-observed daily streamflow peak times (DPTs) during spring snowmelt can exhibit distinct temporal shifts through the season. These shifts have been attributed to three processes: 1) melt flux translation through the snowpack or percolation, 2) surface and subsurface flow of melt from the base of snowpacks to streams, and 3) translation of water flux in the streams to stream gauging stations. The goal of this study is to evaluate and quantify how these processes affect observed DPTs variations at the Reynolds Mountain East (RME) research catchment in southwest Idaho, United States. To accomplish this goal, DPTs were simulated for the RME catchment over a period of 25 water years using a modified snowmelt model, iSnobal, and a hydrology model, the Penn State Integrated Hydrologic Model (PIHM). The influence of each controlling process was then evaluated by simulating the DPT with and without the process under consideration. Both intra- and interseasonal variability in DPTs were evaluated. Results indicate that the magnitude of DPTs is dominantly influenced by subsurface flow, whereas the temporal shifts within a season are primarily controlled by percolation through snow. In addition to the three processes previously identified in the literature, processes governing the snowpack ripening time are identified as additionally influencing DPT variability. Results also indicate that the relative dominance of each control varies through the melt season and between wet and dry years. The results could be used for supporting DPTs prediction efforts and for prioritization of observables for DPT determination.
    publisherAmerican Meteorological Society
    titleAssessment of the Timing of Daily Peak Streamflow during the Melt Season in a Snow-Dominated Watershed
    typeJournal Paper
    journal volume17
    journal issue8
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-15-0152.1
    journal fristpage2225
    journal lastpage2244
    treeJournal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian