YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Multiscale Evaluation of the Detection Capabilities of High-Resolution Satellite Precipitation Products in West Africa

    Source: Journal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 007::page 2041
    Author:
    Guilloteau, Clément
    ,
    Roca, Rémy
    ,
    Gosset, Marielle
    DOI: 10.1175/JHM-D-15-0148.1
    Publisher: American Meteorological Society
    Abstract: alidation studies have assessed the accuracy of satellite-based precipitation estimates at coarse scale (1° and 1 day or coarser) in the tropics, but little is known about their ability to capture the finescale variability of precipitation. Rain detection masks derived from four multisatellite passive sensor products [Tropical Amount of Precipitation with an Estimate of Errors (TAPEER), PERSIANN-CCS, CMORPH, and GSMaP] are evaluated against ground radar data in Burkina Faso. The multiscale evaluation is performed down to 2.8 km and 15 min through discrete wavelet transform. The comparison of wavelet coefficients allows identification of the scales for which the precipitation fraction (fraction of space and time that is rainy) derived from satellite observations is consistent with the reference. The wavelet-based spectral analysis indicates that the energy distribution associated with the rain/no rain variability throughout spatial and temporal scales in satellite products agrees well with radar-based precipitation fields. The wavelet coefficients characterizing very finescale variations (finer than 40 km and 2 h) of satellite and ground radar masks are poorly correlated. Coarse spatial and temporal scales are essentially responsible for the agreement between satellite and radar masks. Consequently, the spectral energy of the difference between the two masks is concentrated in fine scales. Satellite-derived multiyear mean diurnal cycles of rain occurrence are in good agreement with gauge data in Benin and Niger. Spectral analysis and diurnal cycle computation are also performed in the West Africa region using the TRMM Precipitation Radar. The results at the regional scale are consistent with the results obtained over the ground radar and gauge sites.
    • Download: (2.039Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Multiscale Evaluation of the Detection Capabilities of High-Resolution Satellite Precipitation Products in West Africa

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225413
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorGuilloteau, Clément
    contributor authorRoca, Rémy
    contributor authorGosset, Marielle
    date accessioned2017-06-09T17:16:46Z
    date available2017-06-09T17:16:46Z
    date copyright2016/07/01
    date issued2016
    identifier issn1525-755X
    identifier otherams-82312.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225413
    description abstractalidation studies have assessed the accuracy of satellite-based precipitation estimates at coarse scale (1° and 1 day or coarser) in the tropics, but little is known about their ability to capture the finescale variability of precipitation. Rain detection masks derived from four multisatellite passive sensor products [Tropical Amount of Precipitation with an Estimate of Errors (TAPEER), PERSIANN-CCS, CMORPH, and GSMaP] are evaluated against ground radar data in Burkina Faso. The multiscale evaluation is performed down to 2.8 km and 15 min through discrete wavelet transform. The comparison of wavelet coefficients allows identification of the scales for which the precipitation fraction (fraction of space and time that is rainy) derived from satellite observations is consistent with the reference. The wavelet-based spectral analysis indicates that the energy distribution associated with the rain/no rain variability throughout spatial and temporal scales in satellite products agrees well with radar-based precipitation fields. The wavelet coefficients characterizing very finescale variations (finer than 40 km and 2 h) of satellite and ground radar masks are poorly correlated. Coarse spatial and temporal scales are essentially responsible for the agreement between satellite and radar masks. Consequently, the spectral energy of the difference between the two masks is concentrated in fine scales. Satellite-derived multiyear mean diurnal cycles of rain occurrence are in good agreement with gauge data in Benin and Niger. Spectral analysis and diurnal cycle computation are also performed in the West Africa region using the TRMM Precipitation Radar. The results at the regional scale are consistent with the results obtained over the ground radar and gauge sites.
    publisherAmerican Meteorological Society
    titleA Multiscale Evaluation of the Detection Capabilities of High-Resolution Satellite Precipitation Products in West Africa
    typeJournal Paper
    journal volume17
    journal issue7
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-15-0148.1
    journal fristpage2041
    journal lastpage2059
    treeJournal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian