YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Shallow Cumuliform Snowfall Census Using Spaceborne Radar

    Source: Journal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 004::page 1261
    Author:
    Kulie, Mark S.
    ,
    Milani, Lisa
    ,
    Wood, Norman B.
    ,
    Tushaus, Samantha A.
    ,
    Bennartz, Ralf
    ,
    L’Ecuyer, Tristan S.
    DOI: 10.1175/JHM-D-15-0123.1
    Publisher: American Meteorological Society
    Abstract: he first observationally based near-global shallow cumuliform snowfall census is undertaken using multiyear CloudSat Cloud Profiling Radar observations. CloudSat snowfall observations and snowfall rate estimates from the CloudSat 2C-Snow Water Content and Snowfall Rate (2C-SNOW-PROFILE) product are partitioned between shallow cumuliform and nimbostratus cloud structures by utilizing coincident cloud category classifications from the CloudSat 2B-Cloud Scenario Classification (2B-CLDCLASS) product. Shallow cumuliform (nimbostratus) snowfall events comprise about 36% (59%) of snowfall events in the CloudSat snowfall dataset. The remaining 5% of snowfall events are distributed between other categories. Distinct oceanic versus continental trends exist between the two major snowfall categories, as shallow cumuliform snow-producing clouds occur predominantly over the oceans. Regional differences are also noted in the partitioned dataset, with over-ocean regions near Greenland, the far North Atlantic Ocean, the Barents Sea, the western Pacific Ocean, the southern Bering Sea, and the Southern Hemispheric pan-oceanic region containing distinct shallow snowfall occurrence maxima exceeding 60%. Certain Northern Hemispheric continental regions also experience frequent shallow cumuliform snowfall events (e.g., inland Russia), as well as some mountainous regions. CloudSat-generated snowfall rates are also partitioned between the two major snowfall categories to illustrate the importance of shallow snow-producing cloud structures to the average annual snowfall. While shallow cumuliform snowfall produces over 50% of the annual estimated surface snowfall flux regionally, about 18% (82%) of global snowfall is attributed to shallow (nimbostratus) snowfall. This foundational spaceborne snowfall study will be utilized for follow-on evaluative studies with independent model, reanalysis, and ground-based observational datasets to characterize respective dataset biases and to better quantify CloudSat snowfall detection and quantitative snowfall estimate uncertainties.
    • Download: (11.76Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Shallow Cumuliform Snowfall Census Using Spaceborne Radar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225402
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorKulie, Mark S.
    contributor authorMilani, Lisa
    contributor authorWood, Norman B.
    contributor authorTushaus, Samantha A.
    contributor authorBennartz, Ralf
    contributor authorL’Ecuyer, Tristan S.
    date accessioned2017-06-09T17:16:44Z
    date available2017-06-09T17:16:44Z
    date copyright2016/04/01
    date issued2016
    identifier issn1525-755X
    identifier otherams-82302.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225402
    description abstracthe first observationally based near-global shallow cumuliform snowfall census is undertaken using multiyear CloudSat Cloud Profiling Radar observations. CloudSat snowfall observations and snowfall rate estimates from the CloudSat 2C-Snow Water Content and Snowfall Rate (2C-SNOW-PROFILE) product are partitioned between shallow cumuliform and nimbostratus cloud structures by utilizing coincident cloud category classifications from the CloudSat 2B-Cloud Scenario Classification (2B-CLDCLASS) product. Shallow cumuliform (nimbostratus) snowfall events comprise about 36% (59%) of snowfall events in the CloudSat snowfall dataset. The remaining 5% of snowfall events are distributed between other categories. Distinct oceanic versus continental trends exist between the two major snowfall categories, as shallow cumuliform snow-producing clouds occur predominantly over the oceans. Regional differences are also noted in the partitioned dataset, with over-ocean regions near Greenland, the far North Atlantic Ocean, the Barents Sea, the western Pacific Ocean, the southern Bering Sea, and the Southern Hemispheric pan-oceanic region containing distinct shallow snowfall occurrence maxima exceeding 60%. Certain Northern Hemispheric continental regions also experience frequent shallow cumuliform snowfall events (e.g., inland Russia), as well as some mountainous regions. CloudSat-generated snowfall rates are also partitioned between the two major snowfall categories to illustrate the importance of shallow snow-producing cloud structures to the average annual snowfall. While shallow cumuliform snowfall produces over 50% of the annual estimated surface snowfall flux regionally, about 18% (82%) of global snowfall is attributed to shallow (nimbostratus) snowfall. This foundational spaceborne snowfall study will be utilized for follow-on evaluative studies with independent model, reanalysis, and ground-based observational datasets to characterize respective dataset biases and to better quantify CloudSat snowfall detection and quantitative snowfall estimate uncertainties.
    publisherAmerican Meteorological Society
    titleA Shallow Cumuliform Snowfall Census Using Spaceborne Radar
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-15-0123.1
    journal fristpage1261
    journal lastpage1279
    treeJournal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian