YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    PISTE: A Snow-Physics Model Incorporating Human Factors for Groomed Ski Slopes

    Source: Journal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 006::page 2429
    Author:
    Howard, Rosie
    ,
    Stull, Roland
    DOI: 10.1175/JHM-D-14-0013.1
    Publisher: American Meteorological Society
    Abstract: ccurately calculating snow-surface temperature and liquid water content for a groomed ski run, known as a ski piste, is crucial to the preparation of fast skis for alpine racing. Ski technicians can use forecasts of these variables to reduce ski?snow friction by applying layers of wax ahead of time. A new one-dimensional numerical Lagrangian snowpack model, Prognostic Implementation for Snow Temperature Estimation (PISTE), is presented that solves the heat-, liquid water?, and ice-budget equations to calculate these snow variables. In addition, the human effects of skiing and grooming are modeled. Meteorological measurements from a 5-day, clear-sky case study at a ski piste on Whistler Mountain, British Columbia, Canada, are prescribed to PISTE as boundary conditions. Because of a lack of interior snowpack measurements, PISTE was spun up from a dry, isothermal snowpack using repeated boundary conditions from 1 day of measurements. Initial conditions for the main model run that used the subsequent 4 days were taken from this spinup. Simulated and measured snow-surface temperatures show very good agreement, with slight cold daytime and warm nighttime biases (averaging 0.5° and 1°C, respectively). The modeled behavior of snowpack temperature and liquid water content profiles is consistent with previous literature having similar radiative boundary conditions. The case study indicates that PISTE is useful under simple conditions. It shows the potential to be developed into a more sophisticated model that can incorporate complex boundary conditions such as cloudiness and precipitation and can be driven by numerical weather prediction output.
    • Download: (1.496Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      PISTE: A Snow-Physics Model Incorporating Human Factors for Groomed Ski Slopes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225127
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorHoward, Rosie
    contributor authorStull, Roland
    date accessioned2017-06-09T17:15:50Z
    date available2017-06-09T17:15:50Z
    date copyright2014/12/01
    date issued2014
    identifier issn1525-755X
    identifier otherams-82055.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225127
    description abstractccurately calculating snow-surface temperature and liquid water content for a groomed ski run, known as a ski piste, is crucial to the preparation of fast skis for alpine racing. Ski technicians can use forecasts of these variables to reduce ski?snow friction by applying layers of wax ahead of time. A new one-dimensional numerical Lagrangian snowpack model, Prognostic Implementation for Snow Temperature Estimation (PISTE), is presented that solves the heat-, liquid water?, and ice-budget equations to calculate these snow variables. In addition, the human effects of skiing and grooming are modeled. Meteorological measurements from a 5-day, clear-sky case study at a ski piste on Whistler Mountain, British Columbia, Canada, are prescribed to PISTE as boundary conditions. Because of a lack of interior snowpack measurements, PISTE was spun up from a dry, isothermal snowpack using repeated boundary conditions from 1 day of measurements. Initial conditions for the main model run that used the subsequent 4 days were taken from this spinup. Simulated and measured snow-surface temperatures show very good agreement, with slight cold daytime and warm nighttime biases (averaging 0.5° and 1°C, respectively). The modeled behavior of snowpack temperature and liquid water content profiles is consistent with previous literature having similar radiative boundary conditions. The case study indicates that PISTE is useful under simple conditions. It shows the potential to be developed into a more sophisticated model that can incorporate complex boundary conditions such as cloudiness and precipitation and can be driven by numerical weather prediction output.
    publisherAmerican Meteorological Society
    titlePISTE: A Snow-Physics Model Incorporating Human Factors for Groomed Ski Slopes
    typeJournal Paper
    journal volume15
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-14-0013.1
    journal fristpage2429
    journal lastpage2445
    treeJournal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian