YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluating LSM-Based Water Budgets over a West African Basin Assisted with a River Routing Scheme

    Source: Journal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 006::page 2331
    Author:
    Getirana, Augusto C. V.
    ,
    Boone, Aaron
    ,
    Peugeot, Christophe
    DOI: 10.1175/JHM-D-14-0012.1
    Publisher: American Meteorological Society
    Abstract: ithin the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Ouémé River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum?Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region, a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005?08 AMMA field campaign period during which rainfall and streamflow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily streamflow at five gauges within the basin. Results demonstrate that the RRS simulates streamflow at all gauges with relative errors varying from ?20% to 3% and Nash?Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the subbasin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated streamflows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.
    • Download: (1.562Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluating LSM-Based Water Budgets over a West African Basin Assisted with a River Routing Scheme

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225126
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorGetirana, Augusto C. V.
    contributor authorBoone, Aaron
    contributor authorPeugeot, Christophe
    date accessioned2017-06-09T17:15:50Z
    date available2017-06-09T17:15:50Z
    date copyright2014/12/01
    date issued2014
    identifier issn1525-755X
    identifier otherams-82054.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225126
    description abstractithin the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) over the upper Ouémé River basin, in Benin, using a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum?Cunge method coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region, a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin are simulated for the 2005?08 AMMA field campaign period during which rainfall and streamflow data were intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization experiments that were performed using daily streamflow at five gauges within the basin. Results demonstrate that the RRS simulates streamflow at all gauges with relative errors varying from ?20% to 3% and Nash?Sutcliffe coefficients varying from 0.62 to 0.90. DWI varies from 24% to 67% of the base flow as a function of the subbasin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifications are recommended for future studies. Although the evaluation shows that the simulated streamflows are generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.
    publisherAmerican Meteorological Society
    titleEvaluating LSM-Based Water Budgets over a West African Basin Assisted with a River Routing Scheme
    typeJournal Paper
    journal volume15
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-14-0012.1
    journal fristpage2331
    journal lastpage2346
    treeJournal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian