YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Variability of Observed Energy Fluxes during Rain-on-Snow and Clear Sky Snowmelt in a Midlatitude Mountain Environment

    Source: Journal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 003::page 1220
    Author:
    Garvelmann, J.
    ,
    Pohl, S.
    ,
    Weiler, M.
    DOI: 10.1175/JHM-D-13-0187.1
    Publisher: American Meteorological Society
    Abstract: ourly observations of 65 snow monitoring stations were used to investigate the spatiotemporal variability of the surface energy balance during snowmelt in the Black Forest region of southwestern Germany. The study focuses on two rain-on-snow (ROS) events in December 2012 and a clear sky period at the beginning of March 2013 using the same study locations. ROS and clear sky were chosen since they are completely different snowmelt conditions in terms of energy exchanges and dynamics. The results show that snowmelt was dominated by turbulent exchanges at the open field sites and by both turbulent exchanges and net longwave radiation in the forest during ROS. The energy available for snowmelt can be almost identical at open and forest locations during ROS, and a constant energy flux even during night was directed toward the snowpack. During the clear sky conditions, net shortwave radiation was the dominating term in the open, whereas net shortwave and net longwave radiation were most important in the forest. A diurnal signal with positive energy balance during daylight and negative energy balance in the night was observed, with considerably reduced energy available for snowmelt in the forest. Furthermore, the stratified sampling design revealed the strong influence of the canopy and the topography at the locations on the observed energy fluxes. Elevation, aspect, and leaf area index (LAI) were the most important predictor variables during ROS, whereas aspect and LAI were most influential during the clear sky period. The study highlights the distinct spatial variability of the individual energy balance terms over a relatively small area during the differing snowmelt conditions.
    • Download: (1.692Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Variability of Observed Energy Fluxes during Rain-on-Snow and Clear Sky Snowmelt in a Midlatitude Mountain Environment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225030
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorGarvelmann, J.
    contributor authorPohl, S.
    contributor authorWeiler, M.
    date accessioned2017-06-09T17:15:31Z
    date available2017-06-09T17:15:31Z
    date copyright2014/06/01
    date issued2014
    identifier issn1525-755X
    identifier otherams-81969.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225030
    description abstractourly observations of 65 snow monitoring stations were used to investigate the spatiotemporal variability of the surface energy balance during snowmelt in the Black Forest region of southwestern Germany. The study focuses on two rain-on-snow (ROS) events in December 2012 and a clear sky period at the beginning of March 2013 using the same study locations. ROS and clear sky were chosen since they are completely different snowmelt conditions in terms of energy exchanges and dynamics. The results show that snowmelt was dominated by turbulent exchanges at the open field sites and by both turbulent exchanges and net longwave radiation in the forest during ROS. The energy available for snowmelt can be almost identical at open and forest locations during ROS, and a constant energy flux even during night was directed toward the snowpack. During the clear sky conditions, net shortwave radiation was the dominating term in the open, whereas net shortwave and net longwave radiation were most important in the forest. A diurnal signal with positive energy balance during daylight and negative energy balance in the night was observed, with considerably reduced energy available for snowmelt in the forest. Furthermore, the stratified sampling design revealed the strong influence of the canopy and the topography at the locations on the observed energy fluxes. Elevation, aspect, and leaf area index (LAI) were the most important predictor variables during ROS, whereas aspect and LAI were most influential during the clear sky period. The study highlights the distinct spatial variability of the individual energy balance terms over a relatively small area during the differing snowmelt conditions.
    publisherAmerican Meteorological Society
    titleVariability of Observed Energy Fluxes during Rain-on-Snow and Clear Sky Snowmelt in a Midlatitude Mountain Environment
    typeJournal Paper
    journal volume15
    journal issue3
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-13-0187.1
    journal fristpage1220
    journal lastpage1237
    treeJournal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian