YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling the Impacts of Future Climate Change on Irrigation over China: Sensitivity to Adjusted Projections

    Source: Journal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 005::page 2085
    Author:
    Leng, Guoyong
    ,
    Tang, Qiuhong
    DOI: 10.1175/JHM-D-13-0182.1
    Publisher: American Meteorological Society
    Abstract: ecause of the limitations of coarse-resolution general circulation models (GCMs), delta change (DC) methods are generally used to derive scenarios of future climate as inputs into impact models. In this paper, the impact of future climate change on irrigation was investigated over China using the Community Land Model, version 4 (CLM4), which was calibrated against observed irrigation water demand (IWD) at the provincial level. The results show large differences in projected changes of IWD variability, extremes, timing, and regional responses between the DC and bias-corrected (BC) methods. For example, 95th-percentile IWD increased by 62% in the BC method compared to only a 28% increase in the DC method. In addition, a shift of seasonal IWD peaks (averaged over the country) to one month later in the year was projected when using the BC method, whereas no evident changes were predicted when using the DC method. Furthermore, low-percentile runoff has larger impacts in the BC method compared with proportional changes in the DC method, indicating that hydrological droughts seem to be exacerbated by increased climate variability. The discrepancies between the two methods were potentially due to the inability of the DC method to capture the changes in precipitation variability. Therefore, the authors highlight the potential effects of climate variability and the sensitivity to the choice of particular strategy-adjusting climate projection in assessing climate change impacts on irrigation. Some caveats, however, should be placed around interpretation of simulated percentage changes for all of China since a large model bias was found in southern China.
    • Download: (2.588Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling the Impacts of Future Climate Change on Irrigation over China: Sensitivity to Adjusted Projections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225027
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorLeng, Guoyong
    contributor authorTang, Qiuhong
    date accessioned2017-06-09T17:15:31Z
    date available2017-06-09T17:15:31Z
    date copyright2014/10/01
    date issued2014
    identifier issn1525-755X
    identifier otherams-81966.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225027
    description abstractecause of the limitations of coarse-resolution general circulation models (GCMs), delta change (DC) methods are generally used to derive scenarios of future climate as inputs into impact models. In this paper, the impact of future climate change on irrigation was investigated over China using the Community Land Model, version 4 (CLM4), which was calibrated against observed irrigation water demand (IWD) at the provincial level. The results show large differences in projected changes of IWD variability, extremes, timing, and regional responses between the DC and bias-corrected (BC) methods. For example, 95th-percentile IWD increased by 62% in the BC method compared to only a 28% increase in the DC method. In addition, a shift of seasonal IWD peaks (averaged over the country) to one month later in the year was projected when using the BC method, whereas no evident changes were predicted when using the DC method. Furthermore, low-percentile runoff has larger impacts in the BC method compared with proportional changes in the DC method, indicating that hydrological droughts seem to be exacerbated by increased climate variability. The discrepancies between the two methods were potentially due to the inability of the DC method to capture the changes in precipitation variability. Therefore, the authors highlight the potential effects of climate variability and the sensitivity to the choice of particular strategy-adjusting climate projection in assessing climate change impacts on irrigation. Some caveats, however, should be placed around interpretation of simulated percentage changes for all of China since a large model bias was found in southern China.
    publisherAmerican Meteorological Society
    titleModeling the Impacts of Future Climate Change on Irrigation over China: Sensitivity to Adjusted Projections
    typeJournal Paper
    journal volume15
    journal issue5
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-13-0182.1
    journal fristpage2085
    journal lastpage2103
    treeJournal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian