YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Climatology of Storm Characteristics in Costa Rica using the TRMM Precipitation Radar

    Source: Journal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 006::page 2615
    Author:
    Rapp, Anita D.
    ,
    Peterson, Alexander G.
    ,
    Frauenfeld, Oliver W.
    ,
    Quiring, Steven M.
    ,
    Roark, E. Brendan
    DOI: 10.1175/JHM-D-13-0174.1
    Publisher: American Meteorological Society
    Abstract: ropical Rainfall Measuring Mission Precipitation Radar precipitation features are analyzed to understand the role of storm characteristics on the seasonal and diurnal cycles of precipitation in four distinct regions in Costa Rica. The distribution of annual rainfall is highly dependent on the stratiform precipitation, driven largely by seasonal increases in stratiform area. The monthly distribution of stratiform rain is bimodal in most regions, but the timing varies regionally and is related to several important large-scale features: the Caribbean low-level jet, the ITCZ, and the Chorro del Occidente Colombiano (CHOCO) jet. The relative importance of convective precipitation increases on the Caribbean side during wintertime cold air surges. Except for the coastal Caribbean domain, most regions show a strong diurnal cycle with an afternoon peak in convection followed by an evening increase in stratiform rain. Along the Caribbean coast, the diurnal cycle is weaker, with evidence of convection associated with the sea breeze, as well as a nocturnal increase in storms. The behavior of extreme precipitation features with rain volume in the 99th percentile is also analyzed. They are most frequent from May to November, with notable differences between features at the beginning/end of the rainy season versus those in the middle, as well as between wet and dry seasons. Convective rain exceeds stratiform in winter and midsummer extreme features, while stratiform rain is larger at the beginning and end of the wet season. Given projected changes in precipitation and extreme events in Costa Rica for future climate change scenarios, the results indicate the importance of understanding both changes in total precipitation and in the storm characteristics.
    • Download: (1.454Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Climatology of Storm Characteristics in Costa Rica using the TRMM Precipitation Radar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4225019
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorRapp, Anita D.
    contributor authorPeterson, Alexander G.
    contributor authorFrauenfeld, Oliver W.
    contributor authorQuiring, Steven M.
    contributor authorRoark, E. Brendan
    date accessioned2017-06-09T17:15:29Z
    date available2017-06-09T17:15:29Z
    date copyright2014/12/01
    date issued2014
    identifier issn1525-755X
    identifier otherams-81959.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225019
    description abstractropical Rainfall Measuring Mission Precipitation Radar precipitation features are analyzed to understand the role of storm characteristics on the seasonal and diurnal cycles of precipitation in four distinct regions in Costa Rica. The distribution of annual rainfall is highly dependent on the stratiform precipitation, driven largely by seasonal increases in stratiform area. The monthly distribution of stratiform rain is bimodal in most regions, but the timing varies regionally and is related to several important large-scale features: the Caribbean low-level jet, the ITCZ, and the Chorro del Occidente Colombiano (CHOCO) jet. The relative importance of convective precipitation increases on the Caribbean side during wintertime cold air surges. Except for the coastal Caribbean domain, most regions show a strong diurnal cycle with an afternoon peak in convection followed by an evening increase in stratiform rain. Along the Caribbean coast, the diurnal cycle is weaker, with evidence of convection associated with the sea breeze, as well as a nocturnal increase in storms. The behavior of extreme precipitation features with rain volume in the 99th percentile is also analyzed. They are most frequent from May to November, with notable differences between features at the beginning/end of the rainy season versus those in the middle, as well as between wet and dry seasons. Convective rain exceeds stratiform in winter and midsummer extreme features, while stratiform rain is larger at the beginning and end of the wet season. Given projected changes in precipitation and extreme events in Costa Rica for future climate change scenarios, the results indicate the importance of understanding both changes in total precipitation and in the storm characteristics.
    publisherAmerican Meteorological Society
    titleClimatology of Storm Characteristics in Costa Rica using the TRMM Precipitation Radar
    typeJournal Paper
    journal volume15
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-13-0174.1
    journal fristpage2615
    journal lastpage2633
    treeJournal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian