YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study of Climate Change Impact on Flood Frequencies: A Combined Weather Generator and Hydrological Modeling Approach

    Source: Journal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 003::page 1205
    Author:
    Qin, X. S.
    ,
    Lu, Y.
    DOI: 10.1175/JHM-D-13-0126.1
    Publisher: American Meteorological Society
    Abstract: limate change is expected to lead to more frequent and intensive flooding problems for watersheds in the south part of China. This study presented a coupled Long Ashton Research Station Weather Generator (LARS-WG) and Semidistributed Land Use?Based Runoff Processes (SLURP) approach for flood frequency analysis and applied it to the Heshui watershed, China. LARS-WG, as a weather generator, was used to offer 46 sets of climate data from seven general circulation models (GCMs) under various emission scenarios (i.e., A1B, B1, and A2) over near-term and future periods (i.e., T1, 2011?30; T2, 2046?65; and T3, 2080?99). SLURP is a continuous, spatially distributed hydrological model that uses parameters from physiographic data to simulate the hydrological cycle from precipitation to runoff. Flood frequency analysis based on Pearson type III distributions was followed to analyze statistics of annual peaks. The final results (from ensembles of multimodels and multiscenarios) indicated that the magnitudes of a 200-yr return flood for T1, T2, and T3 would increase by 5.23%, 4.08%, and 12.92%, respectively, in comparison to the baseline level; those under the most extreme condition (i.e., worst scenario) would be 25.18%, 31.00%, and 44.46%, respectively. Various GCMs and emission scenarios suggested different results. But the ECHAM5/Max Planck Institute Ocean Model was found to give a more worrying intensification of flood risks and the Commonwealth Scientific and Industrial Research Organisation Mark, version 3.0, and the Community Climate System Model, version 3, were relatively conservative. The study results were useful in helping gain insight into the flood risks and its uncertainty under future climate change conditions for the Heshui watershed, and the proposed methodology is also applicable to many other watersheds in Southeast Asia with similar climatic conditions.
    • Download: (1.406Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study of Climate Change Impact on Flood Frequencies: A Combined Weather Generator and Hydrological Modeling Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224984
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorQin, X. S.
    contributor authorLu, Y.
    date accessioned2017-06-09T17:15:23Z
    date available2017-06-09T17:15:23Z
    date copyright2014/06/01
    date issued2014
    identifier issn1525-755X
    identifier otherams-81927.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224984
    description abstractlimate change is expected to lead to more frequent and intensive flooding problems for watersheds in the south part of China. This study presented a coupled Long Ashton Research Station Weather Generator (LARS-WG) and Semidistributed Land Use?Based Runoff Processes (SLURP) approach for flood frequency analysis and applied it to the Heshui watershed, China. LARS-WG, as a weather generator, was used to offer 46 sets of climate data from seven general circulation models (GCMs) under various emission scenarios (i.e., A1B, B1, and A2) over near-term and future periods (i.e., T1, 2011?30; T2, 2046?65; and T3, 2080?99). SLURP is a continuous, spatially distributed hydrological model that uses parameters from physiographic data to simulate the hydrological cycle from precipitation to runoff. Flood frequency analysis based on Pearson type III distributions was followed to analyze statistics of annual peaks. The final results (from ensembles of multimodels and multiscenarios) indicated that the magnitudes of a 200-yr return flood for T1, T2, and T3 would increase by 5.23%, 4.08%, and 12.92%, respectively, in comparison to the baseline level; those under the most extreme condition (i.e., worst scenario) would be 25.18%, 31.00%, and 44.46%, respectively. Various GCMs and emission scenarios suggested different results. But the ECHAM5/Max Planck Institute Ocean Model was found to give a more worrying intensification of flood risks and the Commonwealth Scientific and Industrial Research Organisation Mark, version 3.0, and the Community Climate System Model, version 3, were relatively conservative. The study results were useful in helping gain insight into the flood risks and its uncertainty under future climate change conditions for the Heshui watershed, and the proposed methodology is also applicable to many other watersheds in Southeast Asia with similar climatic conditions.
    publisherAmerican Meteorological Society
    titleStudy of Climate Change Impact on Flood Frequencies: A Combined Weather Generator and Hydrological Modeling Approach
    typeJournal Paper
    journal volume15
    journal issue3
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-13-0126.1
    journal fristpage1205
    journal lastpage1219
    treeJournal of Hydrometeorology:;2014:;Volume( 015 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian