YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Variational Estimation of Land–Atmosphere Heat Fluxes and Land Surface Parameters Using MODIS Remote Sensing Data

    Source: Journal of Hydrometeorology:;2012:;Volume( 014 ):;issue: 002::page 608
    Author:
    Meng, Chunlei
    ,
    Zhang, Chaolin
    ,
    Tang, Ronglin
    DOI: 10.1175/JHM-D-12-028.1
    Publisher: American Meteorological Society
    Abstract: variational data assimilation algorithm for assimilating the land surface temperature (LST) into the Common Land Model (CLM) was implemented using the land surface energy balance equation as the adjoint physical constraint. In this data assimilation algorithm, the evaporative fractions of the soil and canopy were adjusted according to the remotely sensed surface temperature observations. This paper developed a very simple analytical algorithm to characterize the errors? weighting matrices in the cost function. The leaf area index (LAI) retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) was also assimilated into CLM using the direct insertion method. The analysis results from the CLM with the LST assimilation algorithm compare well with MODIS and field observations for the Yucheng site, especially in daytime. On the basis of the histogram of the error of the LST, it can be concluded that after assimilation, the LST was greatly improved in comparison with the MODIS observations, especially in daytime. These results indicate that this surface temperature assimilation method is efficient and effective, even when only one time observational LST data point is available for each day, especially in daytime. The regional spatial patterns of evapotranspiration and soil surface moisture were also compared before assimilation on the basis of LAI data calculated using the empirical formula, before assimilation on the basis of MODIS LAI data, and after assimilation on the basis of MODIS LAI data.
    • Download: (2.280Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Variational Estimation of Land–Atmosphere Heat Fluxes and Land Surface Parameters Using MODIS Remote Sensing Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224901
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorMeng, Chunlei
    contributor authorZhang, Chaolin
    contributor authorTang, Ronglin
    date accessioned2017-06-09T17:15:05Z
    date available2017-06-09T17:15:05Z
    date copyright2013/04/01
    date issued2012
    identifier issn1525-755X
    identifier otherams-81852.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224901
    description abstractvariational data assimilation algorithm for assimilating the land surface temperature (LST) into the Common Land Model (CLM) was implemented using the land surface energy balance equation as the adjoint physical constraint. In this data assimilation algorithm, the evaporative fractions of the soil and canopy were adjusted according to the remotely sensed surface temperature observations. This paper developed a very simple analytical algorithm to characterize the errors? weighting matrices in the cost function. The leaf area index (LAI) retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) was also assimilated into CLM using the direct insertion method. The analysis results from the CLM with the LST assimilation algorithm compare well with MODIS and field observations for the Yucheng site, especially in daytime. On the basis of the histogram of the error of the LST, it can be concluded that after assimilation, the LST was greatly improved in comparison with the MODIS observations, especially in daytime. These results indicate that this surface temperature assimilation method is efficient and effective, even when only one time observational LST data point is available for each day, especially in daytime. The regional spatial patterns of evapotranspiration and soil surface moisture were also compared before assimilation on the basis of LAI data calculated using the empirical formula, before assimilation on the basis of MODIS LAI data, and after assimilation on the basis of MODIS LAI data.
    publisherAmerican Meteorological Society
    titleVariational Estimation of Land–Atmosphere Heat Fluxes and Land Surface Parameters Using MODIS Remote Sensing Data
    typeJournal Paper
    journal volume14
    journal issue2
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-12-028.1
    journal fristpage608
    journal lastpage621
    treeJournal of Hydrometeorology:;2012:;Volume( 014 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian