YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory

    Source: Journal of Hydrometeorology:;2013:;Volume( 014 ):;issue: 005::page 1401
    Author:
    Shi, Yuning
    ,
    Davis, Kenneth J.
    ,
    Duffy, Christopher J.
    ,
    Yu, Xuan
    DOI: 10.1175/JHM-D-12-0145.1
    Publisher: American Meteorological Society
    Abstract: fully coupled land surface hydrologic model, Flux-PIHM, is developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater at spatial resolutions sufficient to resolve upland stream networks, Flux-PIHM is able to represent heterogeneities due to topography and soils at high resolution, including spatial structure in the link between groundwater and the surface energy balance (SEB). Flux-PIHM has been implemented at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Multistate observations of discharge, water table depth, soil moisture, soil temperature, and sensible and latent heat fluxes in June and July 2009 are used to manually calibrate Flux-PIHM at hourly temporal resolution. Model predictions from 1 March to 1 December 2009 are evaluated. Both hydrologic predictions and SEB predictions show good agreement with observations. Comparisons of model predictions between Flux-PIHM and the original PIHM show that the inclusion of the complex SEB simulation only brings slight improvement in hourly model discharge predictions. Flux-PIHM adds the ability of simulating SEB to PIHM and does improve the prediction of hourly evapotranspiration, the prediction of total runoff (discharge), and the predictions of some peak discharge events, especially after extended dry periods. Model results reveal that annual average sensible and latent heat fluxes are strongly correlated with water table depth, and the correlation is especially strong for the model grids near the stream.
    • Download: (1.632Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224855
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorShi, Yuning
    contributor authorDavis, Kenneth J.
    contributor authorDuffy, Christopher J.
    contributor authorYu, Xuan
    date accessioned2017-06-09T17:14:57Z
    date available2017-06-09T17:14:57Z
    date copyright2013/10/01
    date issued2013
    identifier issn1525-755X
    identifier otherams-81811.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224855
    description abstractfully coupled land surface hydrologic model, Flux-PIHM, is developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater at spatial resolutions sufficient to resolve upland stream networks, Flux-PIHM is able to represent heterogeneities due to topography and soils at high resolution, including spatial structure in the link between groundwater and the surface energy balance (SEB). Flux-PIHM has been implemented at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Multistate observations of discharge, water table depth, soil moisture, soil temperature, and sensible and latent heat fluxes in June and July 2009 are used to manually calibrate Flux-PIHM at hourly temporal resolution. Model predictions from 1 March to 1 December 2009 are evaluated. Both hydrologic predictions and SEB predictions show good agreement with observations. Comparisons of model predictions between Flux-PIHM and the original PIHM show that the inclusion of the complex SEB simulation only brings slight improvement in hourly model discharge predictions. Flux-PIHM adds the ability of simulating SEB to PIHM and does improve the prediction of hourly evapotranspiration, the prediction of total runoff (discharge), and the predictions of some peak discharge events, especially after extended dry periods. Model results reveal that annual average sensible and latent heat fluxes are strongly correlated with water table depth, and the correlation is especially strong for the model grids near the stream.
    publisherAmerican Meteorological Society
    titleDevelopment of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory
    typeJournal Paper
    journal volume14
    journal issue5
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-12-0145.1
    journal fristpage1401
    journal lastpage1420
    treeJournal of Hydrometeorology:;2013:;Volume( 014 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian