YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Modeling Study of Irrigation Effects on Surface Fluxes and Land–Air–Cloud Interactions in the Southern Great Plains

    Source: Journal of Hydrometeorology:;2013:;Volume( 014 ):;issue: 003::page 700
    Author:
    Qian, Yun
    ,
    Huang, Maoyi
    ,
    Yang, Ben
    ,
    Berg, Larry K.
    DOI: 10.1175/JHM-D-12-0134.1
    Publisher: American Meteorological Society
    Abstract: n this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the Southern Great Plains (SGP) for an extremely dry (2006) and wet (2007) year. The results show that including irrigation reduces model bias in soil moisture and surface latent heat (LH) and sensible heat (SH) fluxes, especially during a dry year. Irrigation adds additional water to the surface, leading to changes in the planetary boundary layer. The increase in soil moisture leads to increases in the surface evapotranspiration and near-surface specific humidity but decreases in the SH and surface temperature. Those changes are local and occur during daytime. There is an irrigation-induced decrease in both the lifting condensation level (ZLCL) and mixed-layer depth. The decrease in ZLCL is larger than the decrease in mixed-layer depth, suggesting an increasing probability of shallow clouds. The simulated changes in precipitation induced by irrigation are highly variable in space, and the average precipitation over the SGP region only slightly increases. A high correlation is found among soil moisture, SH, and ZLCL. Larger values of soil moisture in the irrigated simulation due to irrigation in late spring and summer persist into the early fall, suggesting that irrigation-induced soil memory could last a few weeks to months. The results demonstrate the importance of irrigation parameterization for climate studies and improve the process-level understanding on the role of human activity in modulating land?air?cloud interactions.
    • Download: (4.654Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Modeling Study of Irrigation Effects on Surface Fluxes and Land–Air–Cloud Interactions in the Southern Great Plains

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224842
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorQian, Yun
    contributor authorHuang, Maoyi
    contributor authorYang, Ben
    contributor authorBerg, Larry K.
    date accessioned2017-06-09T17:14:55Z
    date available2017-06-09T17:14:55Z
    date copyright2013/06/01
    date issued2013
    identifier issn1525-755X
    identifier otherams-81800.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224842
    description abstractn this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the Southern Great Plains (SGP) for an extremely dry (2006) and wet (2007) year. The results show that including irrigation reduces model bias in soil moisture and surface latent heat (LH) and sensible heat (SH) fluxes, especially during a dry year. Irrigation adds additional water to the surface, leading to changes in the planetary boundary layer. The increase in soil moisture leads to increases in the surface evapotranspiration and near-surface specific humidity but decreases in the SH and surface temperature. Those changes are local and occur during daytime. There is an irrigation-induced decrease in both the lifting condensation level (ZLCL) and mixed-layer depth. The decrease in ZLCL is larger than the decrease in mixed-layer depth, suggesting an increasing probability of shallow clouds. The simulated changes in precipitation induced by irrigation are highly variable in space, and the average precipitation over the SGP region only slightly increases. A high correlation is found among soil moisture, SH, and ZLCL. Larger values of soil moisture in the irrigated simulation due to irrigation in late spring and summer persist into the early fall, suggesting that irrigation-induced soil memory could last a few weeks to months. The results demonstrate the importance of irrigation parameterization for climate studies and improve the process-level understanding on the role of human activity in modulating land?air?cloud interactions.
    publisherAmerican Meteorological Society
    titleA Modeling Study of Irrigation Effects on Surface Fluxes and Land–Air–Cloud Interactions in the Southern Great Plains
    typeJournal Paper
    journal volume14
    journal issue3
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM-D-12-0134.1
    journal fristpage700
    journal lastpage721
    treeJournal of Hydrometeorology:;2013:;Volume( 014 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian