YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of the Scaling Characteristics of Rainfall Derived from Space-Based and Ground-Based Radar Observations

    Source: Journal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 006::page 1277
    Author:
    Gebremichael, Mekonnen
    ,
    Over, Thomas M.
    ,
    Krajewski, Witold F.
    DOI: 10.1175/JHM549.1
    Publisher: American Meteorological Society
    Abstract: In view of the importance of tropical rainfall and the ubiquitous need for its estimates in climate modeling, the authors assess the ability of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to characterize the scaling characteristics of rainfall by comparing the derived results with those obtained from the ground-based radar (GR) data. The analysis is based on 59 months of PR and GR rain rates at three TRMM ground validation (GV) sites: Houston, Texas; Melbourne, Florida; and Kwajalein Atoll, Republic of the Marshall Islands. The authors consider spatial scales ranging from about 4 to 64 km at a fixed temporal scale corresponding to the sensor ?instantaneous? snapshots (?15 min). The focus is on the scaling of the marginal moments, which allows estimation of the scaling parameters from a single scene of data. The standard rainfall products of the PR and the GR are compared in terms of distributions of the scaling parameter estimates, the connection between the scaling parameters and the large-scale spatial average rain rate, and deviations from scale invariance. The five main results are as follows: 1) the PR yields values of the rain intermittence scaling parameter within 20% of the GR estimate; 2) both the PR and GR data show a one-to-one relationship between the intermittence scaling parameter and the large-scale spatial average rain rate that can be fit with the same functional form; 3) the PR underestimates the curvature of the scaling function from 20% to 50%, implying that high rain-rate extremes would be missed in a downscaling procedure; 4) the majority of the scenes (>85%) from both the PR and GR are scale invariant at the moment orders q = 0 and 2; and 5) the scale-invariance property tends to break down more likely over ocean than over land; the rainfall regimes that are not scale invariant are dominated by light storms covering large areas. Our results further show that for a sampling size of one year of data, the TRMM temporal sampling does not significantly affect the derived scaling characteristics. The authors conclude that the TRMM PR has the ability to characterize the basic scaling properties of rainfall, though the resulting parameters are subject to some degree of uncertainty.
    • Download: (2.181Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of the Scaling Characteristics of Rainfall Derived from Space-Based and Ground-Based Radar Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224571
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorGebremichael, Mekonnen
    contributor authorOver, Thomas M.
    contributor authorKrajewski, Witold F.
    date accessioned2017-06-09T17:14:06Z
    date available2017-06-09T17:14:06Z
    date copyright2006/12/01
    date issued2006
    identifier issn1525-755X
    identifier otherams-81555.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224571
    description abstractIn view of the importance of tropical rainfall and the ubiquitous need for its estimates in climate modeling, the authors assess the ability of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to characterize the scaling characteristics of rainfall by comparing the derived results with those obtained from the ground-based radar (GR) data. The analysis is based on 59 months of PR and GR rain rates at three TRMM ground validation (GV) sites: Houston, Texas; Melbourne, Florida; and Kwajalein Atoll, Republic of the Marshall Islands. The authors consider spatial scales ranging from about 4 to 64 km at a fixed temporal scale corresponding to the sensor ?instantaneous? snapshots (?15 min). The focus is on the scaling of the marginal moments, which allows estimation of the scaling parameters from a single scene of data. The standard rainfall products of the PR and the GR are compared in terms of distributions of the scaling parameter estimates, the connection between the scaling parameters and the large-scale spatial average rain rate, and deviations from scale invariance. The five main results are as follows: 1) the PR yields values of the rain intermittence scaling parameter within 20% of the GR estimate; 2) both the PR and GR data show a one-to-one relationship between the intermittence scaling parameter and the large-scale spatial average rain rate that can be fit with the same functional form; 3) the PR underestimates the curvature of the scaling function from 20% to 50%, implying that high rain-rate extremes would be missed in a downscaling procedure; 4) the majority of the scenes (>85%) from both the PR and GR are scale invariant at the moment orders q = 0 and 2; and 5) the scale-invariance property tends to break down more likely over ocean than over land; the rainfall regimes that are not scale invariant are dominated by light storms covering large areas. Our results further show that for a sampling size of one year of data, the TRMM temporal sampling does not significantly affect the derived scaling characteristics. The authors conclude that the TRMM PR has the ability to characterize the basic scaling properties of rainfall, though the resulting parameters are subject to some degree of uncertainty.
    publisherAmerican Meteorological Society
    titleComparison of the Scaling Characteristics of Rainfall Derived from Space-Based and Ground-Based Radar Observations
    typeJournal Paper
    journal volume7
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM549.1
    journal fristpage1277
    journal lastpage1294
    treeJournal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian