YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations

    Source: Journal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 005::page 953
    Author:
    Qian, Taotao
    ,
    Dai, Aiguo
    ,
    Trenberth, Kevin E.
    ,
    Oleson, Keith W.
    DOI: 10.1175/JHM540.1
    Publisher: American Meteorological Society
    Abstract: Because of a lack of observations, historical simulations of land surface conditions using land surface models are needed for studying variability and changes in the continental water cycle and for providing initial conditions for seasonal climate predictions. Atmospheric forcing datasets are also needed for land surface model development. The quality of atmospheric forcing data greatly affects the ability of land surface models to realistically simulate land surface conditions. Here a carefully constructed global forcing dataset for 1948?2004 with 3-hourly and T62 (?1.875°) resolution is described, and historical simulations using the latest version of the Community Land Model version 3.0 (CLM3) are evaluated using available observations of streamflow, continental freshwater discharge, surface runoff, and soil moisture. The forcing dataset was derived by combining observation-based analyses of monthly precipitation and surface air temperature with intramonthly variations from the National Centers for Environmental Prediction?National Center for Atmospheric Research (NCEP?NCAR) reanalysis, which is shown to have spurious trends and biases in surface temperature and precipitation. Surface downward solar radiation from the reanalysis was first adjusted for variations and trends using monthly station records of cloud cover anomaly and then for mean biases using satellite observations during recent decades. Surface specific humidity from the reanalysis was adjusted using the adjusted surface air temperature and reanalysis relative humidity. Surface wind speed and air pressure were interpolated directly from the 6-hourly reanalysis data. Sensitivity experiments show that the precipitation adjustment (to the reanalysis data) leads to the largest improvement, while the temperature and radiation adjustments have only small effects. When forced by this dataset, the CLM3 reproduces many aspects of the long-term mean, annual cycle, interannual and decadal variations, and trends of streamflow for many large rivers (e.g., the Orinoco, Changjiang, Mississippi, etc.), although substantial biases exist. The simulated long-term-mean freshwater discharge into the global and individual oceans is comparable to 921 river-based observational estimates. Observed soil moisture variations over Illinois and parts of Eurasia are generally simulated well, with the dominant influence coming from precipitation. The results suggest that the CLM3 simulations are useful for climate change analysis. It is also shown that unrealistically low intensity and high frequency of precipitation, as in most model-simulated precipitation or observed time-averaged fields, result in too much evaporation and too little runoff, which leads to lower than observed river flows. This problem can be reduced by adjusting the precipitation rates using observed-precipitation frequency maps.
    • Download: (4.430Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224561
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorQian, Taotao
    contributor authorDai, Aiguo
    contributor authorTrenberth, Kevin E.
    contributor authorOleson, Keith W.
    date accessioned2017-06-09T17:14:05Z
    date available2017-06-09T17:14:05Z
    date copyright2006/10/01
    date issued2006
    identifier issn1525-755X
    identifier otherams-81546.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224561
    description abstractBecause of a lack of observations, historical simulations of land surface conditions using land surface models are needed for studying variability and changes in the continental water cycle and for providing initial conditions for seasonal climate predictions. Atmospheric forcing datasets are also needed for land surface model development. The quality of atmospheric forcing data greatly affects the ability of land surface models to realistically simulate land surface conditions. Here a carefully constructed global forcing dataset for 1948?2004 with 3-hourly and T62 (?1.875°) resolution is described, and historical simulations using the latest version of the Community Land Model version 3.0 (CLM3) are evaluated using available observations of streamflow, continental freshwater discharge, surface runoff, and soil moisture. The forcing dataset was derived by combining observation-based analyses of monthly precipitation and surface air temperature with intramonthly variations from the National Centers for Environmental Prediction?National Center for Atmospheric Research (NCEP?NCAR) reanalysis, which is shown to have spurious trends and biases in surface temperature and precipitation. Surface downward solar radiation from the reanalysis was first adjusted for variations and trends using monthly station records of cloud cover anomaly and then for mean biases using satellite observations during recent decades. Surface specific humidity from the reanalysis was adjusted using the adjusted surface air temperature and reanalysis relative humidity. Surface wind speed and air pressure were interpolated directly from the 6-hourly reanalysis data. Sensitivity experiments show that the precipitation adjustment (to the reanalysis data) leads to the largest improvement, while the temperature and radiation adjustments have only small effects. When forced by this dataset, the CLM3 reproduces many aspects of the long-term mean, annual cycle, interannual and decadal variations, and trends of streamflow for many large rivers (e.g., the Orinoco, Changjiang, Mississippi, etc.), although substantial biases exist. The simulated long-term-mean freshwater discharge into the global and individual oceans is comparable to 921 river-based observational estimates. Observed soil moisture variations over Illinois and parts of Eurasia are generally simulated well, with the dominant influence coming from precipitation. The results suggest that the CLM3 simulations are useful for climate change analysis. It is also shown that unrealistically low intensity and high frequency of precipitation, as in most model-simulated precipitation or observed time-averaged fields, result in too much evaporation and too little runoff, which leads to lower than observed river flows. This problem can be reduced by adjusting the precipitation rates using observed-precipitation frequency maps.
    publisherAmerican Meteorological Society
    titleSimulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations
    typeJournal Paper
    journal volume7
    journal issue5
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM540.1
    journal fristpage953
    journal lastpage975
    treeJournal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian