YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Real-Time Data Assimilation for Operational Ensemble Streamflow Forecasting

    Source: Journal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 003::page 548
    Author:
    Vrugt, Jasper A.
    ,
    Gupta, Hoshin V.
    ,
    Nualláin, BreanndánÓ
    ,
    Bouten, Willem
    DOI: 10.1175/JHM504.1
    Publisher: American Meteorological Society
    Abstract: Operational flood forecasting requires that accurate estimates of the uncertainty associated with model-generated streamflow forecasts be provided along with the probable flow levels. This paper demonstrates a stochastic ensemble implementation of the Sacramento model used routinely by the National Weather Service for deterministic streamflow forecasting. The approach, the simultaneous optimization and data assimilation method (SODA), uses an ensemble Kalman filter (EnKF) for recursive state estimation allowing for treatment of streamflow data error, model structural error, and parameter uncertainty, while enabling implementation of the Sacramento model without major modification to its current structural form. Model parameters are estimated in batch using the shuffled complex evolution metropolis stochastic-ensemble optimization approach (SCEM-UA). The SODA approach was implemented using parallel computing to handle the increased computational requirements. Studies using data from the Leaf River, Mississippi, indicate that forecast performance improvements on the order of 30% to 50% can be realized even with a suboptimal implementation of the filter. Further, the SODA parameter estimates appear to be less biased, which may increase the prospects for finding useful regionalization relationships.
    • Download: (1.680Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Real-Time Data Assimilation for Operational Ensemble Streamflow Forecasting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224521
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorVrugt, Jasper A.
    contributor authorGupta, Hoshin V.
    contributor authorNualláin, BreanndánÓ
    contributor authorBouten, Willem
    date accessioned2017-06-09T17:13:57Z
    date available2017-06-09T17:13:57Z
    date copyright2006/06/01
    date issued2006
    identifier issn1525-755X
    identifier otherams-81510.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224521
    description abstractOperational flood forecasting requires that accurate estimates of the uncertainty associated with model-generated streamflow forecasts be provided along with the probable flow levels. This paper demonstrates a stochastic ensemble implementation of the Sacramento model used routinely by the National Weather Service for deterministic streamflow forecasting. The approach, the simultaneous optimization and data assimilation method (SODA), uses an ensemble Kalman filter (EnKF) for recursive state estimation allowing for treatment of streamflow data error, model structural error, and parameter uncertainty, while enabling implementation of the Sacramento model without major modification to its current structural form. Model parameters are estimated in batch using the shuffled complex evolution metropolis stochastic-ensemble optimization approach (SCEM-UA). The SODA approach was implemented using parallel computing to handle the increased computational requirements. Studies using data from the Leaf River, Mississippi, indicate that forecast performance improvements on the order of 30% to 50% can be realized even with a suboptimal implementation of the filter. Further, the SODA parameter estimates appear to be less biased, which may increase the prospects for finding useful regionalization relationships.
    publisherAmerican Meteorological Society
    titleReal-Time Data Assimilation for Operational Ensemble Streamflow Forecasting
    typeJournal Paper
    journal volume7
    journal issue3
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM504.1
    journal fristpage548
    journal lastpage565
    treeJournal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian