YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reconciling Simulated Moisture Fluxes Resulting from Alternate Hydrologic Model Time Steps and Energy Budget Closure Assumptions

    Source: Journal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 003::page 355
    Author:
    Haddeland, Ingjerd
    ,
    Lettenmaier, Dennis P.
    ,
    Skaugen, Thomas
    DOI: 10.1175/JHM496.1
    Publisher: American Meteorological Society
    Abstract: Hydrological model predictions are sensitive to model forcings, input parameters, and the parameterizations of physical processes. Analyses performed for the Variable Infiltration Capacity model show that the resulting moisture fluxes are sensitive to the time step and energy balance closure assumptions. In addition, the model results are sensitive to the method of spatial and temporal disaggregation of precipitation. For parameter estimation purposes, it is desirable to do parameter searches in water balance mode (meaning that the effective surface temperature is assumed equal to the surface air temperature; hence no iteration for energy balance closure is performed) at daily time steps. However, transferring these parameters directly to other model modes (e.g., energy balance, in which an iteration for effective surface temperature is performed, and/or different model time steps) results in changes in the simulated moisture fluxes. The simulated differences in moisture fluxes are mainly a result of the parameterization of evapotranspiration at different time steps and model modes. A simple scheme that calculates correction factors for some model parameters is developed. The scheme is used to match simulated moisture fluxes in hourly and 3-hourly energy balance mode to the daily water balance simulation results, and to match hourly energy balance runs using spatially and temporally disaggregated precipitation to 3-hourly energy balance runs using uniformly disaggregated precipitation. For both approaches, the corrected simulations match the baseline simulations quite closely, both over transects across much of the continental United States and for test applications in the Ohio and Arkansas?Red River basins.
    • Download: (2.546Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reconciling Simulated Moisture Fluxes Resulting from Alternate Hydrologic Model Time Steps and Energy Budget Closure Assumptions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224513
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorHaddeland, Ingjerd
    contributor authorLettenmaier, Dennis P.
    contributor authorSkaugen, Thomas
    date accessioned2017-06-09T17:13:56Z
    date available2017-06-09T17:13:56Z
    date copyright2006/06/01
    date issued2006
    identifier issn1525-755X
    identifier otherams-81502.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224513
    description abstractHydrological model predictions are sensitive to model forcings, input parameters, and the parameterizations of physical processes. Analyses performed for the Variable Infiltration Capacity model show that the resulting moisture fluxes are sensitive to the time step and energy balance closure assumptions. In addition, the model results are sensitive to the method of spatial and temporal disaggregation of precipitation. For parameter estimation purposes, it is desirable to do parameter searches in water balance mode (meaning that the effective surface temperature is assumed equal to the surface air temperature; hence no iteration for energy balance closure is performed) at daily time steps. However, transferring these parameters directly to other model modes (e.g., energy balance, in which an iteration for effective surface temperature is performed, and/or different model time steps) results in changes in the simulated moisture fluxes. The simulated differences in moisture fluxes are mainly a result of the parameterization of evapotranspiration at different time steps and model modes. A simple scheme that calculates correction factors for some model parameters is developed. The scheme is used to match simulated moisture fluxes in hourly and 3-hourly energy balance mode to the daily water balance simulation results, and to match hourly energy balance runs using spatially and temporally disaggregated precipitation to 3-hourly energy balance runs using uniformly disaggregated precipitation. For both approaches, the corrected simulations match the baseline simulations quite closely, both over transects across much of the continental United States and for test applications in the Ohio and Arkansas?Red River basins.
    publisherAmerican Meteorological Society
    titleReconciling Simulated Moisture Fluxes Resulting from Alternate Hydrologic Model Time Steps and Energy Budget Closure Assumptions
    typeJournal Paper
    journal volume7
    journal issue3
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM496.1
    journal fristpage355
    journal lastpage370
    treeJournal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian