YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improvement of Modeled Soil Wetness Conditions and Turbulent Fluxes through the Assimilation of Observed Discharge

    Source: Journal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 003::page 458
    Author:
    Pauwels, Valentijn R. N.
    ,
    De Lannoy, Gabriëlle J. M.
    DOI: 10.1175/JHM490.1
    Publisher: American Meteorological Society
    Abstract: The objective of this paper is to improve the performance of a hydrologic model through the assimilation of observed discharge. Since an observation of discharge at a certain time is always influenced by the catchment wetness conditions and meteorology in the past, the assimilation method will have to modify both the past and present soil wetness conditions. For this purpose, a bias-corrected retrospective ensemble Kalman filter has been used as the assimilation algorithm. The assimilation methodology takes into account bias in the forecast state variables for the calculation of the optimal estimates. A set of twin experiments has been developed, in which it is attempted to correct the model results obtained with erroneous initial conditions and strongly over- and underestimated precipitation data. The results suggest that the assimilation of observed discharge can correct for erroneous model initial conditions. When the precipitation used to force the model is underestimated, the assimilation of observed discharge can reduce the bias in the modeled turbulent fluxes by approximately 50%. This is due to a correction of the modeled soil moisture. In the case of an overestimation of the precipitation, an improvement in the modeled wetness conditions is also obtained after data assimilation, but this does not lead to a significant improvement in the modeled energy balance. The results in this paper indicate that there is potential to improve the estimation of hydrologic states and fluxes through the assimilation of observed discharge data.
    • Download: (1.416Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improvement of Modeled Soil Wetness Conditions and Turbulent Fluxes through the Assimilation of Observed Discharge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224505
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorPauwels, Valentijn R. N.
    contributor authorDe Lannoy, Gabriëlle J. M.
    date accessioned2017-06-09T17:13:55Z
    date available2017-06-09T17:13:55Z
    date copyright2006/06/01
    date issued2006
    identifier issn1525-755X
    identifier otherams-81496.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224505
    description abstractThe objective of this paper is to improve the performance of a hydrologic model through the assimilation of observed discharge. Since an observation of discharge at a certain time is always influenced by the catchment wetness conditions and meteorology in the past, the assimilation method will have to modify both the past and present soil wetness conditions. For this purpose, a bias-corrected retrospective ensemble Kalman filter has been used as the assimilation algorithm. The assimilation methodology takes into account bias in the forecast state variables for the calculation of the optimal estimates. A set of twin experiments has been developed, in which it is attempted to correct the model results obtained with erroneous initial conditions and strongly over- and underestimated precipitation data. The results suggest that the assimilation of observed discharge can correct for erroneous model initial conditions. When the precipitation used to force the model is underestimated, the assimilation of observed discharge can reduce the bias in the modeled turbulent fluxes by approximately 50%. This is due to a correction of the modeled soil moisture. In the case of an overestimation of the precipitation, an improvement in the modeled wetness conditions is also obtained after data assimilation, but this does not lead to a significant improvement in the modeled energy balance. The results in this paper indicate that there is potential to improve the estimation of hydrologic states and fluxes through the assimilation of observed discharge data.
    publisherAmerican Meteorological Society
    titleImprovement of Modeled Soil Wetness Conditions and Turbulent Fluxes through the Assimilation of Observed Discharge
    typeJournal Paper
    journal volume7
    journal issue3
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM490.1
    journal fristpage458
    journal lastpage477
    treeJournal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian