YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seasonal Variations in Terrestrial Water Storage for Major Midlatitude River Basins

    Source: Journal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 001::page 39
    Author:
    Hirschi, Martin
    ,
    Seneviratne, Sonia I.
    ,
    Schär, Christoph
    DOI: 10.1175/JHM480.1
    Publisher: American Meteorological Society
    Abstract: This paper presents a new diagnostic dataset of monthly variations in terrestrial water storage for 37 midlatitude river basins in Europe, Asia, North America, and Australia. Terrestrial water storage is the sum of all forms of water storage on land surfaces, and its seasonal and interannual variations are in principle determined by soil moisture, groundwater, snow cover, and surface water. The dataset is derived with the combined atmospheric and terrestrial water-balance approach using conventional streamflow measurements and atmospheric moisture convergence data from the ECMWF 40-yr Re-Analysis (ERA-40). A recent study for the Mississippi River basin (Seneviratne et al. 2004) has demonstrated the validity of this diagnostic approach and found that it agreed well with in situ observations in Illinois. The present study extends this previous analysis to other regions of the midlatitudes. A systematic analysis is presented of the slow drift that occurs with the water-balance approach. It is shown that the drift not only depends on the size of the catchment under consideration, but also on the geographical region and the underlying topography. The drift is in general not constant in time, but artificial inhomogeneities may result from changes in the global observing system used in the 44 yr of the reanalysis. To remove this time-dependent drift, a simple high-pass filter is applied. Validation of the results is conducted for several catchments with an appreciable coverage of in situ soil moisture and snow cover depth observations in the former Soviet Union, Mongolia, and China. Although the groundwater component is not accounted for in these observations, encouraging correlations are found between diagnostic and in situ estimates of terrestrial water storage, both for seasonal and interannual variations. Comparisons conducted against simulated ERA-40 terrestrial water storage variations suggest that the reanalysis substantially underestimates the amplitude of the seasonal cycle. The basin-scale water-balance (BSWB) dataset is available for download over the Internet. It constitutes a useful tool for the validation of climate models, large-scale land surface data assimilation systems, and indirect observations of terrestrial water storage variations.
    • Download: (3.098Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seasonal Variations in Terrestrial Water Storage for Major Midlatitude River Basins

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224494
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorHirschi, Martin
    contributor authorSeneviratne, Sonia I.
    contributor authorSchär, Christoph
    date accessioned2017-06-09T17:13:53Z
    date available2017-06-09T17:13:53Z
    date copyright2006/02/01
    date issued2006
    identifier issn1525-755X
    identifier otherams-81486.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224494
    description abstractThis paper presents a new diagnostic dataset of monthly variations in terrestrial water storage for 37 midlatitude river basins in Europe, Asia, North America, and Australia. Terrestrial water storage is the sum of all forms of water storage on land surfaces, and its seasonal and interannual variations are in principle determined by soil moisture, groundwater, snow cover, and surface water. The dataset is derived with the combined atmospheric and terrestrial water-balance approach using conventional streamflow measurements and atmospheric moisture convergence data from the ECMWF 40-yr Re-Analysis (ERA-40). A recent study for the Mississippi River basin (Seneviratne et al. 2004) has demonstrated the validity of this diagnostic approach and found that it agreed well with in situ observations in Illinois. The present study extends this previous analysis to other regions of the midlatitudes. A systematic analysis is presented of the slow drift that occurs with the water-balance approach. It is shown that the drift not only depends on the size of the catchment under consideration, but also on the geographical region and the underlying topography. The drift is in general not constant in time, but artificial inhomogeneities may result from changes in the global observing system used in the 44 yr of the reanalysis. To remove this time-dependent drift, a simple high-pass filter is applied. Validation of the results is conducted for several catchments with an appreciable coverage of in situ soil moisture and snow cover depth observations in the former Soviet Union, Mongolia, and China. Although the groundwater component is not accounted for in these observations, encouraging correlations are found between diagnostic and in situ estimates of terrestrial water storage, both for seasonal and interannual variations. Comparisons conducted against simulated ERA-40 terrestrial water storage variations suggest that the reanalysis substantially underestimates the amplitude of the seasonal cycle. The basin-scale water-balance (BSWB) dataset is available for download over the Internet. It constitutes a useful tool for the validation of climate models, large-scale land surface data assimilation systems, and indirect observations of terrestrial water storage variations.
    publisherAmerican Meteorological Society
    titleSeasonal Variations in Terrestrial Water Storage for Major Midlatitude River Basins
    typeJournal Paper
    journal volume7
    journal issue1
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM480.1
    journal fristpage39
    journal lastpage60
    treeJournal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian