YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Utility of Remote Sensing–Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions

    Source: Journal of Hydrometeorology:;2005:;Volume( 006 ):;issue: 006::page 878
    Author:
    Li, Fuqin
    ,
    Kustas, William P.
    ,
    Prueger, John H.
    ,
    Neale, Christopher M. U.
    ,
    Jackson, Thomas J.
    DOI: 10.1175/JHM464.1
    Publisher: American Meteorological Society
    Abstract: Two resistance network formulations that are used in a two-source model for parameterizing soil and canopy energy exchanges are evaluated for a wide range of soybean and corn crop cover and soil moisture conditions during the Soil Moisture?Atmosphere Coupling Experiment (SMACEX). The parallel resistance formulation does not consider interaction between the soil and canopy fluxes, whereas the series resistance algorithms provide interaction via the computation of a within-air canopy temperature. Land surface temperatures were derived from high-resolution Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) scenes and aircraft imagery. These data, along with tower-based meteorological data, provided inputs for the two-source energy balance model. Comparison of the local model output with tower-based flux observations indicated that both the parallel and series resistance formulations produced basically similar estimates with root-mean-square difference (RMSD) values ranging from approximately 20 to 50 W m?2 for net radiation and latent heat fluxes, respectively. The largest relative difference in percentage [mean absolute percent difference (MAPD)] was for sensible heat flux, which was ≈35%, followed by a MAPD ≈ 25% for soil heat flux, ≈10% for latent heat flux, and a MAPD < 5% for net radiation. Although both series and parallel versions gave similar results, the parallel resistance formulation was found to be more sensitive to model parameter specification, particularly in accounting for the effects of vegetation clumping resulting from row crop planting on flux partitioning. A sensitivity and model stability analysis for a key model input variable, that is, fractional vegetation cover, also show that the parallel resistance network is more sensitive to the errors vegetation cover estimates. Furthermore, it is shown that for a much narrower range in vegetation cover fraction, compared to the series resistance network, the parallel resistance scheme is able to achieve a balance in both the radiative temperature and convective heat fluxes between the soil and canopy components. This result appears to be related to the moderating effects of the air temperature in the canopy air space computed in the series resistance scheme, which represents the effective source height for turbulent energy exchange across the soil?canopy?atmosphere system.
    • Download: (931.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Utility of Remote Sensing–Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224477
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorLi, Fuqin
    contributor authorKustas, William P.
    contributor authorPrueger, John H.
    contributor authorNeale, Christopher M. U.
    contributor authorJackson, Thomas J.
    date accessioned2017-06-09T17:13:51Z
    date available2017-06-09T17:13:51Z
    date copyright2005/12/01
    date issued2005
    identifier issn1525-755X
    identifier otherams-81471.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224477
    description abstractTwo resistance network formulations that are used in a two-source model for parameterizing soil and canopy energy exchanges are evaluated for a wide range of soybean and corn crop cover and soil moisture conditions during the Soil Moisture?Atmosphere Coupling Experiment (SMACEX). The parallel resistance formulation does not consider interaction between the soil and canopy fluxes, whereas the series resistance algorithms provide interaction via the computation of a within-air canopy temperature. Land surface temperatures were derived from high-resolution Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) scenes and aircraft imagery. These data, along with tower-based meteorological data, provided inputs for the two-source energy balance model. Comparison of the local model output with tower-based flux observations indicated that both the parallel and series resistance formulations produced basically similar estimates with root-mean-square difference (RMSD) values ranging from approximately 20 to 50 W m?2 for net radiation and latent heat fluxes, respectively. The largest relative difference in percentage [mean absolute percent difference (MAPD)] was for sensible heat flux, which was ≈35%, followed by a MAPD ≈ 25% for soil heat flux, ≈10% for latent heat flux, and a MAPD < 5% for net radiation. Although both series and parallel versions gave similar results, the parallel resistance formulation was found to be more sensitive to model parameter specification, particularly in accounting for the effects of vegetation clumping resulting from row crop planting on flux partitioning. A sensitivity and model stability analysis for a key model input variable, that is, fractional vegetation cover, also show that the parallel resistance network is more sensitive to the errors vegetation cover estimates. Furthermore, it is shown that for a much narrower range in vegetation cover fraction, compared to the series resistance network, the parallel resistance scheme is able to achieve a balance in both the radiative temperature and convective heat fluxes between the soil and canopy components. This result appears to be related to the moderating effects of the air temperature in the canopy air space computed in the series resistance scheme, which represents the effective source height for turbulent energy exchange across the soil?canopy?atmosphere system.
    publisherAmerican Meteorological Society
    titleUtility of Remote Sensing–Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions
    typeJournal Paper
    journal volume6
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/JHM464.1
    journal fristpage878
    journal lastpage891
    treeJournal of Hydrometeorology:;2005:;Volume( 006 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian