Internal Intraseasonal Variability of the West African Monsoon in WRFSource: Journal of Climate:;2017:;volume( 030 ):;issue: 015::page 5815DOI: 10.1175/JCLI-D-16-0750.1Publisher: American Meteorological Society
Abstract: he West African monsoon (WAM) and its landmark features, which include African easterly waves (AEWs) and the African easterly jet (AEJ), exhibit significant intraseasonal variability in boreal summer. However, the degree to which this variability is modulated by external large-scale phenomena, such as the Madden-Julian oscillation (MJO), remains unclear. The Weather Research and Forecasting (WRF) Model is employed to diagnose the importance of the MJO and other external influences for the intraseasonal variability of the WAM and associated AEW energetics by removing 30-90-day signals from initial and lateral boundary conditions in sensitivity tests. The WAM produces similar intraseasonal variability in the absence of external influences, indicating that the MJO is not critical to produce WAM variability. In control and sensitivity experiments, AEW precursor signals are similar near the AEJ entrance in East Africa. For example, an eastward extension of the AEJ increases barotropic and baroclinic energy conversions in East Africa prior to a 30-90-day maximum of perturbation kinetic energy in West Africa. The WAM appears to prefer a faster oscillation when MJO forcing is removed, suggesting that the MJO may serve as a pacemaker for intraseasonal oscillations in the WAM. WRF results show that eastward propagating intraseasonal signals (e.g., Kelvin wave fronts) are responsible for this pacing, while the role of westward propagating intraseasonal signals (e.g., MJO-induced Rossby waves) appears to be limited. Mean state biases across the simulations complicate the interpretation of results.
|
Collections
Show full item record
contributor author | Alaka, Ghassan J. | |
contributor author | Maloney, Eric D. | |
date accessioned | 2017-06-09T17:13:35Z | |
date available | 2017-06-09T17:13:35Z | |
date issued | 2017 | |
identifier issn | 0894-8755 | |
identifier other | ams-81374.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4224370 | |
description abstract | he West African monsoon (WAM) and its landmark features, which include African easterly waves (AEWs) and the African easterly jet (AEJ), exhibit significant intraseasonal variability in boreal summer. However, the degree to which this variability is modulated by external large-scale phenomena, such as the Madden-Julian oscillation (MJO), remains unclear. The Weather Research and Forecasting (WRF) Model is employed to diagnose the importance of the MJO and other external influences for the intraseasonal variability of the WAM and associated AEW energetics by removing 30-90-day signals from initial and lateral boundary conditions in sensitivity tests. The WAM produces similar intraseasonal variability in the absence of external influences, indicating that the MJO is not critical to produce WAM variability. In control and sensitivity experiments, AEW precursor signals are similar near the AEJ entrance in East Africa. For example, an eastward extension of the AEJ increases barotropic and baroclinic energy conversions in East Africa prior to a 30-90-day maximum of perturbation kinetic energy in West Africa. The WAM appears to prefer a faster oscillation when MJO forcing is removed, suggesting that the MJO may serve as a pacemaker for intraseasonal oscillations in the WAM. WRF results show that eastward propagating intraseasonal signals (e.g., Kelvin wave fronts) are responsible for this pacing, while the role of westward propagating intraseasonal signals (e.g., MJO-induced Rossby waves) appears to be limited. Mean state biases across the simulations complicate the interpretation of results. | |
publisher | American Meteorological Society | |
title | Internal Intraseasonal Variability of the West African Monsoon in WRF | |
type | Journal Paper | |
journal volume | 030 | |
journal issue | 015 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-16-0750.1 | |
journal fristpage | 5815 | |
journal lastpage | 5833 | |
tree | Journal of Climate:;2017:;volume( 030 ):;issue: 015 | |
contenttype | Fulltext |